Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,069 Bytes
f2d6ac6 9c89ed0 f2d6ac6 9c89ed0 f2d6ac6 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 f2d6ac6 9c89ed0 f2d6ac6 9c89ed0 f2d6ac6 9c89ed0 f2d6ac6 c92c8f7 f2d6ac6 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 f2d6ac6 b32bd6a 7173d5d 9c89ed0 7173d5d f2d6ac6 9c89ed0 f2d6ac6 9c89ed0 c92c8f7 9c89ed0 7173d5d c92c8f7 7173d5d c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 f2d6ac6 9c89ed0 7173d5d 9c89ed0 fbcd34b c92c8f7 9c89ed0 c92c8f7 9c89ed0 f2d6ac6 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 c92c8f7 9c89ed0 f2d6ac6 c92c8f7 9c89ed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
from datasets import load_dataset
import gradio as gr
from gradio_client import Client
import json, os, random, torch, spaces
from diffusers import FluxPipeline, AutoencoderKL
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
# βββββββββββββββββββββββββββββ 1. Device ββββββββββββββββββββββββββββββββββββ
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# βββββββββββββββββββββββ 2. Image / FLUX pipeline βββββββββββββββββββββββββββ
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
).to(device)
good_vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
).to(device)
pipe.flux_pipe_call_that_returns_an_iterable_of_images = (
flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
)
# βββββββββββββββββββββββββ 3. LLM client (robust) βββββββββββββββββββββββββββ
def _first_working_client(candidates: list[str]) -> Client:
"""
Try a list of Space URLs / repo-ids, return the first that gives a JSON config.
"""
for src in candidates:
try:
print(f"[info] Trying LLM Space: {src}")
c = Client(src, hf_token=os.getenv("HF_TOKEN")) # token optional
# If this passes, the config was parsed as JSON
c.view_api()
print(f"[info] Selected LLM Space: {src}")
return c
except Exception as e:
print(f"[warn] {src} not usable β {e}")
raise RuntimeError("No usable LLM Space found!")
LLM_CANDIDATES = [
"https://huggingfaceh4-zephyr-chat.hf.space", # direct URL
"HuggingFaceH4/zephyr-chat", # repo slug
"huggingface-projects/gemma-2-9b-it", # fallback Space
]
llm_client = _first_working_client(LLM_CANDIDATES)
CHAT_API = llm_client.view_api()[0]["api_name"] # safest way to get endpoint
def call_llm(
user_prompt: str,
system_prompt: str = "You are a helpful creative assistant.",
history: list | None = None,
temperature: float = 0.7,
top_p: float = 0.9,
max_tokens: int = 1024,
) -> str:
"""
Unified chat wrapper β works for both Zephyr and Gemma Spaces.
"""
history = history or []
try:
result = llm_client.predict(
user_prompt,
system_prompt,
history,
temperature,
top_p,
max_tokens,
api_name=CHAT_API,
)
# Some Spaces return string, some return (β¦, history) tuple
if isinstance(result, str):
return result.strip()
return result[1][0][-1].strip()
except Exception as e:
print(f"[error] LLM call failed β {e}")
return "β¦"
# βββββββββββββββββββββββββ 4. Persona dataset βββββββββββββββββββββββββββββββ
ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
def random_persona() -> str:
return ds[random.randint(0, len(ds) - 1)]["persona"]
# βββββββββββββββββββββββββββ 5. Prompt templates βββββββββββββββββββββββββββ
PROMPT_TEMPLATE = """Generate a character with this persona description:
{persona_description}
In a world with this description:
{world_description}
Write the character in JSON with keys:
name, background, appearance, personality, skills_and_abilities,
goals, conflicts, backstory, current_situation,
spoken_lines (list of strings).
Respond with JSON only (no markdown)."""
WORLD_PROMPT = (
"Invent a short, unique and vivid world description. "
"Respond with the description only."
)
# βββββββββββββββββββββββ 6. Helper functions βββββββββββββββββββββββββββββββ
def random_world() -> str:
return call_llm(WORLD_PROMPT)
@spaces.GPU(duration=75)
def infer_flux(character_json):
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=character_json["appearance"],
guidance_scale=3.5,
num_inference_steps=28,
width=1024,
height=1024,
generator=torch.Generator("cpu").manual_seed(0),
output_type="pil",
good_vae=good_vae,
):
yield img
def generate_character(world_desc: str, persona_desc: str,
progress=gr.Progress(track_tqdm=True)):
raw = call_llm(
PROMPT_TEMPLATE.format(
persona_description=persona_desc,
world_description=world_desc,
),
max_tokens=1024,
)
try:
return json.loads(raw)
except json.JSONDecodeError:
# One retry
raw = call_llm(
PROMPT_TEMPLATE.format(
persona_description=persona_desc,
world_description=world_desc,
),
max_tokens=1024,
)
return json.loads(raw)
# βββββββββββββββββββββββββββββ 7. UI ββββββββββββββββββββββββββββββββββββββββ
DESCRIPTION = """
* Generates a character sheet (JSON) from a world + persona.
* Appearance images via **FLUX-dev**; narrative via **Zephyr-chat** (or Gemma fallback).
* Personas come from **FinePersonas-Lite**.
Tip β Spin the world, then shuffle personas to see very different heroes.
"""
with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("<h1 style='text-align:center'>π§ββοΈ Character Generator</h1>")
gr.Markdown(DESCRIPTION.strip())
with gr.Row():
world_tb = gr.Textbox(label="World Description", lines=10, scale=4)
persona_tb = gr.Textbox(
label="Persona Description", value=random_persona(), lines=10, scale=1
)
with gr.Row():
btn_world = gr.Button("π Random World", variant="secondary")
btn_generate = gr.Button("β¨ Generate Character", variant="primary", scale=5)
btn_persona = gr.Button("π Random Persona", variant="secondary")
with gr.Row():
img_out = gr.Image(label="Character Image")
json_out = gr.JSON(label="Character Description")
btn_generate.click(
generate_character, [world_tb, persona_tb], [json_out]
).then(
infer_flux, [json_out], [img_out]
)
btn_world.click(random_world, outputs=[world_tb])
btn_persona.click(random_persona, outputs=[persona_tb])
demo.queue().launch(share=False)
|