Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
import shutil
|
7 |
+
import os
|
8 |
+
from difflib import SequenceMatcher
|
9 |
+
import json
|
10 |
+
from urllib.parse import quote_plus
|
11 |
+
import base64
|
12 |
+
|
13 |
+
# -----------------------------------------------
|
14 |
+
# π§ UTILITY FUNCTIONS
|
15 |
+
# -----------------------------------------------
|
16 |
+
|
17 |
+
def construct_query(row):
|
18 |
+
"""Constructs the Google search query using applicant data."""
|
19 |
+
query = str(row['Applicant Name'])
|
20 |
+
optional_fields = ['Job Title', 'State', 'City', 'Skills']
|
21 |
+
|
22 |
+
for field in optional_fields:
|
23 |
+
if field in row and pd.notna(row[field]):
|
24 |
+
value = row[field]
|
25 |
+
query += f" {str(value).strip()}" if str(value).strip() else ""
|
26 |
+
|
27 |
+
query += " linkedin"
|
28 |
+
print(f"[DEBUG] Search Query: {query}")
|
29 |
+
return query
|
30 |
+
|
31 |
+
def get_name_from_url(link):
|
32 |
+
"""Extracts the name part from a LinkedIn profile URL."""
|
33 |
+
match = re.search(r'linkedin\.com/in/([a-zA-Z0-9-]+)', link)
|
34 |
+
if match:
|
35 |
+
profile_name = match.group(1).replace('-', ' ')
|
36 |
+
print(f"[DEBUG] Extracted profile name from URL: {profile_name}")
|
37 |
+
return profile_name
|
38 |
+
return None
|
39 |
+
|
40 |
+
def calculate_similarity(name1, name2):
|
41 |
+
"""Calculates similarity between two names."""
|
42 |
+
similarity = SequenceMatcher(None, name1.lower().strip(), name2.lower().strip()).ratio()
|
43 |
+
print(f"[DEBUG] Similarity between '{name1}' and '{name2}' = {similarity}")
|
44 |
+
return similarity
|
45 |
+
|
46 |
+
# -----------------------------------------------
|
47 |
+
# π LINKEDIN SCRAPER FUNCTION
|
48 |
+
# -----------------------------------------------
|
49 |
+
|
50 |
+
def fetch_linkedin_links(query, api_key, applicant_name):
|
51 |
+
"""Fetches LinkedIn profile links using BrightData SERP scraping API."""
|
52 |
+
try:
|
53 |
+
print(f"[DEBUG] Sending request to BrightData for query: {query}")
|
54 |
+
url = "https://api.brightdata.com/request"
|
55 |
+
google_url = f"https://www.google.com/search?q={quote_plus(query)}"
|
56 |
+
|
57 |
+
payload = {
|
58 |
+
"zone": "serp_api2",
|
59 |
+
"url": google_url,
|
60 |
+
"method": "GET",
|
61 |
+
"country": "us",
|
62 |
+
"format": "raw",
|
63 |
+
"data_format": "html"
|
64 |
+
}
|
65 |
+
|
66 |
+
headers = {
|
67 |
+
"Authorization": f"Bearer {api_key}",
|
68 |
+
"Content-Type": "application/json"
|
69 |
+
}
|
70 |
+
|
71 |
+
response = requests.post(url, headers=headers, json=payload)
|
72 |
+
response.raise_for_status()
|
73 |
+
html = response.text
|
74 |
+
|
75 |
+
linkedin_regex = r'https://(?:[a-z]{2,3}\.)?linkedin\.com/in/[a-zA-Z0-9\-_/]+'
|
76 |
+
matches = re.findall(linkedin_regex, html)
|
77 |
+
print(f"[DEBUG] Found {len(matches)} LinkedIn link(s) in search result")
|
78 |
+
|
79 |
+
for link in matches:
|
80 |
+
profile_name = get_name_from_url(link)
|
81 |
+
if profile_name:
|
82 |
+
similarity = calculate_similarity(applicant_name, profile_name)
|
83 |
+
if similarity >= 0.5:
|
84 |
+
print(f"[DEBUG] Match found: {link}")
|
85 |
+
return link
|
86 |
+
print(f"[DEBUG] No matching LinkedIn profile found for: {applicant_name}")
|
87 |
+
return None
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
print(f"[ERROR] Error fetching LinkedIn link for query '{query}': {e}")
|
91 |
+
return None
|
92 |
+
|
93 |
+
# -----------------------------------------------
|
94 |
+
# π PROCESS FILE FUNCTION
|
95 |
+
# -----------------------------------------------
|
96 |
+
|
97 |
+
def process_file(file, api_key):
|
98 |
+
"""Processes the uploaded Excel file to fetch LinkedIn profile links."""
|
99 |
+
try:
|
100 |
+
df = pd.read_excel(file)
|
101 |
+
print(f"[DEBUG] Input file read successfully. Rows: {len(df)}")
|
102 |
+
|
103 |
+
if 'Applicant Name' not in df.columns:
|
104 |
+
raise ValueError("Missing required column: 'Applicant Name'")
|
105 |
+
|
106 |
+
df = df[df['Applicant Name'].notna()]
|
107 |
+
df = df[df['Applicant Name'].str.strip() != '']
|
108 |
+
print(f"[DEBUG] Valid applicant rows after filtering: {len(df)}")
|
109 |
+
|
110 |
+
df['Search Query'] = df.apply(construct_query, axis=1)
|
111 |
+
df['LinkedIn Link'] = df.apply(
|
112 |
+
lambda row: fetch_linkedin_links(row['Search Query'], api_key, row['Applicant Name']),
|
113 |
+
axis=1
|
114 |
+
)
|
115 |
+
|
116 |
+
temp_dir = tempfile.mkdtemp()
|
117 |
+
output_file = os.path.join(temp_dir, "updated_with_linkedin_links.csv")
|
118 |
+
df.to_csv(output_file, index=False)
|
119 |
+
print(f"[DEBUG] Output written to: {output_file}")
|
120 |
+
return output_file
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
print(f"[ERROR] Error processing file: {e}")
|
124 |
+
st.error(f"Error processing file: {e}")
|
125 |
+
return None
|
126 |
+
|
127 |
+
# -----------------------------------------------
|
128 |
+
# π STREAMLIT INTERFACE
|
129 |
+
# -----------------------------------------------
|
130 |
+
|
131 |
+
st.set_page_config(page_title="LinkedIn Profile Scraper", layout="centered")
|
132 |
+
st.title("π LinkedIn Profile Link Scraper")
|
133 |
+
st.markdown("Upload an Excel file with applicant details to fetch best-matching LinkedIn profile links.")
|
134 |
+
|
135 |
+
api_key = st.text_input("Enter your BrightData SERP API Key", type="password")
|
136 |
+
uploaded_file = st.file_uploader("Upload Excel File (.xlsx)", type=["xlsx"])
|
137 |
+
|
138 |
+
if uploaded_file and api_key:
|
139 |
+
st.info("β³ Processing file... This may take a moment.")
|
140 |
+
output_file = process_file(uploaded_file, api_key)
|
141 |
+
if output_file:
|
142 |
+
with open(output_file, "rb") as f:
|
143 |
+
csv_bytes = f.read()
|
144 |
+
|
145 |
+
b64 = base64.b64encode(csv_bytes).decode()
|
146 |
+
href = f'<a href="data:text/csv;base64,{b64}" download="updated_with_linkedin_links.csv" id="auto-download-link"></a>'
|
147 |
+
|
148 |
+
st.markdown(href, unsafe_allow_html=True)
|
149 |
+
st.markdown(
|
150 |
+
"""
|
151 |
+
<script>
|
152 |
+
document.getElementById('auto-download-link').click();
|
153 |
+
</script>
|
154 |
+
""",
|
155 |
+
unsafe_allow_html=True
|
156 |
+
)
|
157 |
+
|
158 |
+
st.success("β
Processing complete. Your file is downloading automatically! Or click below if it didn't start.")
|
159 |
+
# st.success("β
Processing complete. Download the updated file below.")
|
160 |
+
st.download_button(
|
161 |
+
label="π₯ Download CSV with LinkedIn Links",
|
162 |
+
data=f,
|
163 |
+
file_name="updated_with_linkedin_links.csv",
|
164 |
+
mime="text/csv"
|
165 |
+
)
|
166 |
+
shutil.rmtree(os.path.dirname(output_file)) # Cleanup temp directory
|
167 |
+
elif not api_key:
|
168 |
+
st.warning("β οΈ Please enter your BrightData SERP API key to proceed.")
|