Updating app.py
Browse files
app.py
CHANGED
@@ -1,153 +1,105 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
|
4 |
-
import re
|
5 |
-
import tempfile
|
6 |
-
import shutil
|
7 |
-
import os
|
8 |
-
from difflib import SequenceMatcher
|
9 |
|
10 |
-
# Function to construct a Google search query from applicant data
|
11 |
def construct_query(row):
|
12 |
"""Constructs the Google search query using applicant data."""
|
13 |
-
query = str(row['Applicant Name'])
|
14 |
-
print(f"Constructing query for Applicant Name: {row['Applicant Name']}")
|
15 |
-
|
16 |
-
# Additional fields to include in the search query if available
|
17 |
optional_fields = ['Job Title', 'State', 'City', 'Skills']
|
18 |
for field in optional_fields:
|
19 |
-
if field in row and pd.notna(row[field]):
|
20 |
value = row[field]
|
21 |
-
if isinstance(value, str) and value.strip():
|
22 |
-
query += f" {value.strip()}"
|
23 |
-
elif not isinstance(value, str):
|
24 |
query += f" {str(value).strip()}"
|
25 |
-
query += " linkedin"
|
26 |
-
print(f"Constructed query: {query}")
|
27 |
return query
|
28 |
|
29 |
-
# Function to extract the name from a LinkedIn profile URL
|
30 |
def get_name_from_url(link):
|
31 |
"""Extracts the name part from a LinkedIn profile URL."""
|
32 |
-
|
33 |
-
match = re.search(r'linkedin\.com/in/([a-zA-Z0-9-]+)', link) # Regex to find profile name
|
34 |
if match:
|
35 |
-
|
36 |
-
print(f"Extracted name: {name}")
|
37 |
-
return name
|
38 |
-
print("No name extracted from URL.")
|
39 |
return None
|
40 |
|
41 |
-
# Function to calculate similarity between two names
|
42 |
def calculate_similarity(name1, name2):
|
43 |
"""Calculates similarity between two names."""
|
44 |
-
|
45 |
-
print(f"Calculated similarity between '{name1}' and '{name2}': {similarity}")
|
46 |
-
return similarity
|
47 |
|
48 |
-
# Function to fetch LinkedIn links using SerpAPI
|
49 |
def fetch_linkedin_links(query, api_key, applicant_name):
|
50 |
-
"""Fetches LinkedIn profile links
|
51 |
-
linkedin_regex = r'https://(www|[a-z]{2})\.linkedin\.com/.*'
|
|
|
52 |
try:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
# Iterate through results to find LinkedIn links
|
66 |
for result in organic_results:
|
67 |
-
link = result.get("link")
|
68 |
-
|
69 |
-
|
70 |
-
profile_name = get_name_from_url(link) # Extract the name from the URL
|
71 |
if profile_name:
|
72 |
-
similarity = calculate_similarity(applicant_name, profile_name)
|
73 |
-
if similarity >= 0.5:
|
74 |
-
print(f"Valid LinkedIn link found: {link} (Similarity: {similarity})")
|
75 |
return link
|
76 |
-
else:
|
77 |
-
print(f"Rejected link: {link} (Similarity: {similarity})")
|
78 |
-
else:
|
79 |
-
print(f"Link does not match LinkedIn regex: {link}")
|
80 |
-
|
81 |
-
print("No valid LinkedIn link found.")
|
82 |
return None
|
83 |
except Exception as e:
|
84 |
-
print(f"Error fetching link for query '{query}': {e}")
|
85 |
st.error(f"Error fetching link for query '{query}': {e}")
|
86 |
return None
|
87 |
|
88 |
-
# Function to process the uploaded Excel file
|
89 |
def process_file(file, api_key):
|
90 |
"""Processes the uploaded Excel file to fetch LinkedIn profile links."""
|
91 |
try:
|
92 |
-
|
93 |
-
df = pd.read_excel(file) # Read the Excel file into a pandas DataFrame
|
94 |
-
print(f"Initial DataFrame:\n{df.head()}")
|
95 |
-
|
96 |
-
# Filter out rows with empty or missing applicant names
|
97 |
df = df[df['Applicant Name'].notna()]
|
98 |
df = df[df['Applicant Name'].str.strip() != '']
|
99 |
-
print(f"Filtered DataFrame:\n{df.head()}")
|
100 |
-
|
101 |
-
# Generate search queries for each applicant
|
102 |
df['Search Query'] = df.apply(construct_query, axis=1)
|
103 |
-
print(f"DataFrame with Search Queries:\n{df[['Applicant Name', 'Search Query']].head()}")
|
104 |
-
|
105 |
-
# Fetch LinkedIn links for each applicant
|
106 |
df['LinkedIn Link'] = df.apply(
|
107 |
lambda row: fetch_linkedin_links(row['Search Query'], api_key, row['Applicant Name']),
|
108 |
axis=1
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
# Save the updated DataFrame to a temporary file
|
113 |
-
temp_dir = tempfile.mkdtemp() # Create a temporary directory
|
114 |
output_file = os.path.join(temp_dir, "updated_with_linkedin_links.csv")
|
115 |
-
df.to_csv(output_file, index=False)
|
116 |
-
print(f"CSV file created at: {output_file}")
|
117 |
-
|
118 |
return output_file
|
119 |
except Exception as e:
|
120 |
-
print(f"Error processing file: {e}")
|
121 |
st.error(f"Error processing file: {e}")
|
122 |
return None
|
123 |
|
124 |
-
# Streamlit UI
|
125 |
-
st.title("LinkedIn Profile Link Scraper")
|
126 |
-
st.markdown("Upload an Excel file with applicant details, and get a CSV with LinkedIn profile links.")
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
# File uploader widget
|
132 |
-
uploaded_file = st.file_uploader("Upload Excel File", type=["xlsx"]) # File uploader for Excel files
|
133 |
-
|
134 |
-
# Process the file if both file and API key are provided
|
135 |
if uploaded_file and api_key:
|
136 |
st.write("Processing file...")
|
137 |
-
output_file = process_file(uploaded_file, api_key)
|
138 |
-
|
139 |
if output_file:
|
140 |
-
with open(output_file, "rb") as f:
|
141 |
st.download_button(
|
142 |
label="Download Updated CSV",
|
143 |
data=f,
|
144 |
file_name="updated_with_linkedin_links.csv",
|
145 |
mime="text/csv"
|
146 |
)
|
147 |
-
print("File ready for download.")
|
148 |
-
|
149 |
-
# Clean up the temporary directory after download
|
150 |
shutil.rmtree(os.path.dirname(output_file))
|
151 |
-
print("Temporary files cleaned up.")
|
152 |
elif not api_key:
|
153 |
-
st.warning("Please enter your
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
import shutil
|
7 |
+
import os
|
8 |
+
from difflib import SequenceMatcher
|
9 |
|
|
|
10 |
def construct_query(row):
|
11 |
"""Constructs the Google search query using applicant data."""
|
12 |
+
query = str(row['Applicant Name'])
|
|
|
|
|
|
|
13 |
optional_fields = ['Job Title', 'State', 'City', 'Skills']
|
14 |
for field in optional_fields:
|
15 |
+
if field in row and pd.notna(row[field]):
|
16 |
value = row[field]
|
17 |
+
if isinstance(value, str) and value.strip():
|
18 |
+
query += f" {value.strip()}"
|
19 |
+
elif not isinstance(value, str):
|
20 |
query += f" {str(value).strip()}"
|
21 |
+
query += " linkedin"
|
|
|
22 |
return query
|
23 |
|
|
|
24 |
def get_name_from_url(link):
|
25 |
"""Extracts the name part from a LinkedIn profile URL."""
|
26 |
+
match = re.search(r'linkedin\.com/in/([a-zA-Z0-9-]+)', link)
|
|
|
27 |
if match:
|
28 |
+
return match.group(1).replace('-', ' ')
|
|
|
|
|
|
|
29 |
return None
|
30 |
|
|
|
31 |
def calculate_similarity(name1, name2):
|
32 |
"""Calculates similarity between two names."""
|
33 |
+
return SequenceMatcher(None, name1.lower().strip(), name2.lower().strip()).ratio()
|
|
|
|
|
34 |
|
|
|
35 |
def fetch_linkedin_links(query, api_key, applicant_name):
|
36 |
+
"""Fetches LinkedIn profile links using BrightData SERP API."""
|
37 |
+
linkedin_regex = r'https://(www|[a-z]{2})\.linkedin\.com/.*'
|
38 |
+
|
39 |
try:
|
40 |
+
response = requests.get(
|
41 |
+
"https://serpapi.brightdata.com/google/search",
|
42 |
+
params={
|
43 |
+
"q": query,
|
44 |
+
"num": 5,
|
45 |
+
"api_key": api_key
|
46 |
+
}
|
47 |
+
)
|
48 |
+
response.raise_for_status()
|
49 |
+
results = response.json()
|
50 |
+
organic_results = results.get("organic_results", [])
|
51 |
+
|
|
|
52 |
for result in organic_results:
|
53 |
+
link = result.get("link")
|
54 |
+
if re.match(linkedin_regex, link):
|
55 |
+
profile_name = get_name_from_url(link)
|
|
|
56 |
if profile_name:
|
57 |
+
similarity = calculate_similarity(applicant_name, profile_name)
|
58 |
+
if similarity >= 0.5:
|
|
|
59 |
return link
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
return None
|
61 |
except Exception as e:
|
|
|
62 |
st.error(f"Error fetching link for query '{query}': {e}")
|
63 |
return None
|
64 |
|
|
|
65 |
def process_file(file, api_key):
|
66 |
"""Processes the uploaded Excel file to fetch LinkedIn profile links."""
|
67 |
try:
|
68 |
+
df = pd.read_excel(file)
|
|
|
|
|
|
|
|
|
69 |
df = df[df['Applicant Name'].notna()]
|
70 |
df = df[df['Applicant Name'].str.strip() != '']
|
|
|
|
|
|
|
71 |
df['Search Query'] = df.apply(construct_query, axis=1)
|
|
|
|
|
|
|
72 |
df['LinkedIn Link'] = df.apply(
|
73 |
lambda row: fetch_linkedin_links(row['Search Query'], api_key, row['Applicant Name']),
|
74 |
axis=1
|
75 |
)
|
76 |
+
|
77 |
+
temp_dir = tempfile.mkdtemp()
|
|
|
|
|
78 |
output_file = os.path.join(temp_dir, "updated_with_linkedin_links.csv")
|
79 |
+
df.to_csv(output_file, index=False)
|
|
|
|
|
80 |
return output_file
|
81 |
except Exception as e:
|
|
|
82 |
st.error(f"Error processing file: {e}")
|
83 |
return None
|
84 |
|
85 |
+
# Streamlit UI
|
86 |
+
st.title("LinkedIn Profile Link Scraper")
|
87 |
+
st.markdown("Upload an Excel file with applicant details, and get a CSV with LinkedIn profile links.")
|
88 |
|
89 |
+
api_key = st.text_input("Enter your BrightData SERP API Key", type="password")
|
90 |
+
uploaded_file = st.file_uploader("Upload Excel File", type=["xlsx"])
|
91 |
|
|
|
|
|
|
|
|
|
92 |
if uploaded_file and api_key:
|
93 |
st.write("Processing file...")
|
94 |
+
output_file = process_file(uploaded_file, api_key)
|
|
|
95 |
if output_file:
|
96 |
+
with open(output_file, "rb") as f:
|
97 |
st.download_button(
|
98 |
label="Download Updated CSV",
|
99 |
data=f,
|
100 |
file_name="updated_with_linkedin_links.csv",
|
101 |
mime="text/csv"
|
102 |
)
|
|
|
|
|
|
|
103 |
shutil.rmtree(os.path.dirname(output_file))
|
|
|
104 |
elif not api_key:
|
105 |
+
st.warning("Please enter your BrightData SERP API key to proceed.")
|