Spaces:
Sleeping
Sleeping
File size: 45,332 Bytes
0c54d38 c1ffb0b 0c54d38 bed4703 0c54d38 c1ffb0b 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b bed4703 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 bed4703 402763b 0c54d38 bed4703 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 402763b 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 bed4703 0c54d38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 |
import gradio as gr
import base64
import asyncio
import json
import os
from mcp import ClientSession, StdioServerParameters, types
from mcp.client.stdio import stdio_client
from typing import List
import nest_asyncio
import threading
import queue
import time
from PIL import Image
from io import BytesIO
os.makedirs("AI-Marketing-Content-Creator/created_image", exist_ok=True)
nest_asyncio.apply()
class MCP_Modal_Marketing_Tool:
def __init__(self):
self.session: ClientSession = None
self.available_tools: List[dict] = []
self.is_connected = False
self.request_queue = queue.Queue()
self.result_queue = queue.Queue()
async def call_mcp_tool(self, tool_name: str, arguments: dict):
"""Generic method to call any MCP tool"""
try:
result = await self.session.call_tool(tool_name, arguments=arguments)
if hasattr(result, 'content') and result.content:
return result.content[0].text
return None
except Exception as e:
print(f"Error calling tool {tool_name}: {str(e)}")
raise e
async def process_queue(self):
"""Process requests from the queue"""
while True:
try:
if not self.request_queue.empty():
item = self.request_queue.get()
if item == "STOP":
break
tool_name, arguments, request_id = item
try:
result = await self.call_mcp_tool(tool_name, arguments)
self.result_queue.put(("success", result, request_id))
except Exception as e:
self.result_queue.put(("error", str(e), request_id))
else:
await asyncio.sleep(0.1)
except Exception as e:
print(f"Error in process_queue: {str(e)}")
async def connect_to_server_and_run(self):
"""Connect to MCP server and start processing"""
server_params = StdioServerParameters(
command="python",
args=["mcp_server.py"],
env=None,
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
self.session = session
await session.initialize()
response = await session.list_tools()
tools = response.tools
print("Connected to MCP server with tools:",
[tool.name for tool in tools])
self.available_tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in tools]
self.is_connected = True
print("Marketing Tool MCP Server connected!")
# Check Modal health
health_result = await self.call_mcp_tool("health_check", {})
print(f"Modal API Status: {health_result}")
await self.process_queue()
marketing_tool = MCP_Modal_Marketing_Tool()
def wait_for_result(request_id, timeout=300):
"""Wait for a result with a specific request ID"""
start_time = time.time()
while time.time() - start_time < timeout:
if not marketing_tool.result_queue.empty():
status, result, result_id = marketing_tool.result_queue.get()
if result_id == request_id:
return status, result
else:
# Put it back if it's not our result
marketing_tool.result_queue.put((status, result, result_id))
time.sleep(0.1)
return "error", "Timeout"
def decode_and_save_image(image_b64, filename):
"""Decode base64 and save image"""
import base64
from PIL import Image
from io import BytesIO
# Ensure the path is inside created_image/
full_path = os.path.join("AI-Marketing-Content-Creator/created_image", filename)
image_b64 = image_b64.strip()
missing_padding = len(image_b64) % 4
if missing_padding:
image_b64 += '=' * (4 - missing_padding)
image_data = base64.b64decode(image_b64)
image = Image.open(BytesIO(image_data))
image.save(full_path)
return full_path
def single_image_generation(prompt, num_steps, style):
"""Generate a single image with optional style"""
if not marketing_tool.is_connected:
return None, "β οΈ MCP Server not connected. Please wait a few seconds and try again."
try:
request_id = f"single_{time.time()}"
# Apply style if selected
if style != "none":
style_request_id = f"style_{time.time()}"
marketing_tool.request_queue.put((
"add_style_modifier",
{"prompt": prompt, "style": style},
style_request_id
))
status, result = wait_for_result(style_request_id, timeout=50)
if status == "success":
style_data = json.loads(result)
prompt = style_data["enhanced_prompt"]
# Generate image
marketing_tool.request_queue.put((
"generate_and_save_image",
{"prompt": prompt, "num_inference_steps": num_steps},
request_id
))
status, result = wait_for_result(request_id)
if status == "success":
filename = decode_and_save_image(
result, f"generated_{int(time.time())}.png")
return filename, f"β
Image generated successfully!\nπ Final prompt: {prompt}"
else:
return None, f"β Error: {result}"
except Exception as e:
return None, f"β Error: {str(e)}"
# Update the batch generation function in app.py
def enhanced_batch_generation(prompt, variation_type, count, num_steps):
"""Generate strategic variations for A/B testing"""
if not marketing_tool.is_connected:
return None, "β οΈ MCP Server not connected. Please wait a few seconds and try again."
try:
request_id = f"smart_batch_{time.time()}"
marketing_tool.request_queue.put((
"batch_generate_smart_variations",
{
"prompt": prompt,
"count": count,
"variation_type": variation_type,
"num_inference_steps": num_steps
},
request_id
))
status, result = wait_for_result(request_id, timeout=300)
if status == "success":
batch_data = json.loads(result)
images = []
variation_details = []
for i, img_data in enumerate(batch_data["images"]):
filename = decode_and_save_image(
img_data["image_base64"],
f"variation_{i+1}_{int(time.time())}.png"
)
images.append(filename)
variation_details.append(
f"**Variation {i+1}:** {img_data['variation_description']}\n"
f"*Testing Purpose:* {img_data['testing_purpose']}\n"
)
strategy_explanation = batch_data.get("testing_strategy", "")
status_message = (
f"β
Generated {len(images)} strategic variations!\n\n"
f"**Testing Strategy:** {strategy_explanation}\n\n"
f"**Variations Created:**\n" +
"\n".join(variation_details) +
f"\nπ‘ **Next Steps:** Post each variation and track engagement metrics to see which performs best!"
)
return images, status_message
else:
return None, f"β Error: {result}"
except Exception as e:
return None, f"β Error: {str(e)}"
def update_strategy_info(variation_type):
strategy_descriptions = {
"mixed": {
"title": "Mixed Strategy Testing",
"description": "Tests multiple variables (colors, layout, mood) to find overall best approach",
"use_case": "Best for comprehensive optimization when you're not sure what to test first"
},
"color_schemes": {
"title": "Color Psychology Testing",
"description": "Tests how different color schemes affect emotional response and engagement",
"use_case": "Great for brand content, product launches, and emotional marketing"
},
"composition_styles": {
"title": "Layout & Composition Testing",
"description": "Tests different visual arrangements and focal points",
"use_case": "Perfect for optimizing visual hierarchy and user attention flow"
},
"emotional_tones": {
"title": "Emotional Tone Testing",
"description": "Tests different moods and feelings to see what resonates with your audience",
"use_case": "Ideal for brand personality and audience connection optimization"
},
"social_media": {
"title": "Platform Optimization Testing",
"description": "Tests platform-specific elements and styles",
"use_case": "Essential for multi-platform content strategies"
},
"engagement_hooks": {
"title": "Attention-Grabbing Testing",
"description": "Tests different ways to capture and hold viewer attention",
"use_case": "Critical for improving reach and stopping scroll behavior"
},
"brand_positioning": {
"title": "Brand Positioning Testing",
"description": "Tests how different brand personalities affect audience perception",
"use_case": "Important for brand development and target audience alignment"
}
}
info = strategy_descriptions.get(variation_type, strategy_descriptions["mixed"])
return f"""
**π‘ Current Strategy:** {info['title']}
**What this tests:** {info['description']}
**Best for:** {info['use_case']}
"""
def social_media_generation(prompt, platforms, num_steps):
"""Generate images for multiple social media platforms with correct resolutions"""
if not marketing_tool.is_connected:
return None, "MCP Server not connected"
try:
request_id = f"social_{time.time()}"
marketing_tool.request_queue.put((
"generate_social_media_set",
{"prompt": prompt, "platforms": platforms, "num_inference_steps": num_steps},
request_id
))
status, result = wait_for_result(request_id)
if status == "success":
social_data = json.loads(result)
results = []
for platform_data in social_data["results"]:
filename = decode_and_save_image(
platform_data["image_base64"],
f"{platform_data['platform']}_{platform_data['resolution']}_{int(time.time())}.png"
)
results.append((platform_data["platform"], filename, platform_data["resolution"]))
# Create a status message with resolutions
if results:
status_msg = "Generated images:\n" + "\n".join([
f"β’ {r[0]}: {r[2]}" for r in results
])
return [r[1] for r in results], status_msg
else:
return None, "No images generated"
else:
return None, f"Error: {result}"
except Exception as e:
return None, f"Error: {str(e)}"
def start_mcp_server():
"""Start MCP server in background"""
def run_server():
asyncio.run(marketing_tool.connect_to_server_and_run())
thread = threading.Thread(target=run_server, daemon=True)
thread.start()
return thread
SIZE_PRESETS = {
"instagram_post": (1080, 1080),
"instagram_story": (1080, 1920),
"twitter_post": (1200, 675),
"linkedin_post": (1200, 1200),
"facebook_cover": (1200, 630),
"youtube_thumbnail": (1280, 720)
}
with gr.Blocks(title="AI Marketing Content Generator") as demo:
gr.Markdown("""
# π¨ AI Marketing Content Generator
### Powered by Flux AI on Modal GPU via MCP
Generate professional marketing images with AI - optimized for content creators and marketers!
β° **Please wait 5-10 seconds after launching for the MCP server to connect**
""")
# Connection status
connection_status = gr.Markdown("π Connecting to MCP server...")
with gr.Tabs():
with gr.TabItem("π Quick Start"):
gr.Markdown("""
# π Welcome to AI Marketing Content Generator!
### Create professional marketing images in minutes - no design skills needed!
---
## β‘ Get Started in 3 Simple Steps
### Step 1: β
Check Connection
Look at the status above - wait for "β
Connected" before starting
### Step 2: π― Choose What You Need
- **πΌοΈ Single Image** β One perfect marketing image
- **π A/B Testing** β Multiple versions to see what works best
- **π± Social Media** β Images sized for different platforms
- **π€ AI Assistant** β Let AI write the perfect prompt for you
### Step 3: π¨ Create & Download
Enter your details, click generate, and download your professional images!
---
""")
with gr.Row():
with gr.Column():
gr.Markdown("""
## πΌοΈ Single Image
**Perfect for beginners!**
β¨ **What it does:** Creates one professional marketing image
π― **Best for:**
- Blog post headers
- Social media posts
- Product announcements
- Website banners
π‘ **How to use:**
1. Describe what you want
2. Pick a style (optional)
3. Click "Generate Image"
**Example:** "Professional photo of a coffee cup on wooden table"
""")
with gr.Column():
gr.Markdown("""
## π A/B Testing Batch
**For optimizing performance**
β¨ **What it does:** Creates 2-5 different versions to test
π― **Best for:**
- Finding what your audience likes
- Improving engagement rates
- Testing different approaches
π‘ **How to use:**
1. Describe your content idea
2. Choose testing strategy
3. Post each version and see which performs best
**Example:** Test different colors for your sale announcement
""")
with gr.Row():
with gr.Column():
gr.Markdown("""
## π± Social Media Pack
**Multi-platform made easy**
β¨ **What it does:** Creates perfectly sized images for each platform
π― **Best for:**
- Cross-platform campaigns
- Consistent branding
- Saving time
π‘ **How to use:**
1. Describe your content
2. Check platforms you need
3. Get all sizes at once
**Platforms:** Instagram, Twitter, LinkedIn, Facebook, YouTube
""")
with gr.Column():
gr.Markdown("""
## π€ AI Assistant
**Let AI do the thinking**
β¨ **What it does:** Writes professional prompts for you
π― **Best for:**
- When you're not sure how to describe what you want
- Getting professional results
- Learning better prompting
π‘ **How to use:**
1. Tell AI what you're creating in plain English
2. AI writes the perfect prompt
3. Generate your image
**Example Input:** "I need a hero image for my water bottle business"
""")
gr.Markdown("---")
with gr.Accordion("π― Real-World Examples", open=False):
gr.Markdown("""
## See What You Can Create
### ποΈ E-commerce Business Owner
**Need:** Product photos for online store
**Use:** Single Image tab
**Prompt:** "Professional product photography of [your product], white background, studio lighting"
**Result:** Clean, professional product images
### π± Social Media Manager
**Need:** Content that gets engagement
**Use:** A/B Testing tab
**Prompt:** "Eye-catching announcement for Black Friday sale"
**Result:** 3-5 different versions to test which gets more likes/shares
### π’ Small Business Owner
**Need:** Content for multiple platforms
**Use:** Social Media Pack tab
**Prompt:** "Grand opening celebration announcement"
**Result:** Perfect sizes for Instagram, Facebook, Twitter, LinkedIn
### π€ First-Time User
**Need:** Not sure how to describe what you want
**Use:** AI Assistant tab
**Input:** "I need marketing images for my yoga studio"
**Result:** AI creates perfect prompts for you
""")
with gr.Accordion("π‘ Tips for Amazing Results", open=False):
gr.Markdown("""
## Make Your Images Stand Out
### β
Do This:
- **Be specific:** "Red sports car in garage" vs "car"
- **Mention the mood:** "professional," "fun," "elegant"
- **Include details:** "wooden background," "bright lighting"
- **Use style presets:** They make everything look more professional
### β Avoid This:
- Vague descriptions like "nice image"
- Too many conflicting ideas in one prompt
- Forgetting to mention important details
### π¨ Style Guide:
- **Professional:** For business, corporate, formal content
- **Playful:** For fun brands, kids products, casual content
- **Minimalist:** For clean, modern, simple designs
- **Luxury:** For high-end products, premium brands
- **Tech:** For software, apps, modern technology
### β‘ Speed vs Quality:
- **Quick test:** 30-40 steps (faster, good for trying ideas)
- **Final image:** 70-100 steps (slower, best quality)
""")
with gr.Accordion("π§ Common Issues & Solutions", open=False):
gr.Markdown("""
## Troubleshooting Guide
### β "MCP Server not connected"
**Solution:** Wait 10-15 seconds after opening the app, then refresh the page
### β "Timeout" errors
**Solution:** The AI might be starting up - wait 30 seconds and try again
### β Image quality is poor
**Solution:** Increase the "Quality" slider to 70+ steps
### β Image doesn't match what I wanted
**Solution:**
- Be more specific in your description
- Try the AI Assistant tab for better prompts
- Use style presets
### β Generation is too slow
**Solution:** Lower the quality steps to 30-40 for faster results
### π¬ Still need help?
- Check if your internet connection is stable
- Try refreshing the page
- Make sure you're being specific in your prompts
""")
gr.Markdown("""
---
## π Ready to Start?
1. **Check the connection status** at the top of the page
2. **Choose a tab** based on what you need to create
3. **Start with simple prompts** and experiment
4. **Have fun creating!** π¨
---
### π― Pro Tip for Beginners
Start with the **π€ AI Assistant** tab if you're unsure - it will guide you through creating the perfect prompt!
""")
with gr.TabItem("πΌοΈ Single Image"):
with gr.Row():
with gr.Column():
single_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe your image in detail...\nExample: Professional headshot of business person in modern office",
lines=3
)
with gr.Row():
single_style = gr.Dropdown(
choices=["none", "professional", "playful",
"minimalist", "luxury", "tech"],
value="none",
label="Style Preset",
info="Apply a consistent style to your image"
)
single_steps = gr.Slider(
10, 100, 50,
step=10,
label="Quality (Inference Steps)",
info="Higher = better quality but slower"
)
single_btn = gr.Button(
"π¨ Generate Image", variant="primary", size="lg")
with gr.Accordion("π Example Ideas",open=False):
gr.Examples(
examples=[
["""This poster is dominated by blue-purple neon lights, with the background of a hyper city at night, with towering skyscrapers surrounded by colorful LED light strips. In the center of the picture is a young steampunk modern robot with virtual information interfaces and digital codes floating around him. The future fonted title "CYNAPTICS" is in neon blue, glowing, as if outlined by laser, exuding a sense of technology and a cold and mysterious atmosphere. The small words "FUTURE IS NOW" seem to be calling the audience to the future, full of science fiction and trendy charm""", "professional", 50],
["poster of,a white girl,A young korean woman pose with a white Vespa scooter on a sunny day,dressed in a stylish red and white jacket .inside a jacket is strapless,with a casual denim skirt. She wears a helmet with vintage-style goggles,and converse sneakers,adding a retro touch to her outfit. The bright sunlight highlights her relaxed and cheerful expression,and the VespaΓ’ΒΒs white color pops against the clear blue sky. The background features a vibrant,sunlit scene with a few trees or distant buildings,creating a fresh and joyful atmosphere. Art style: realistic,high detail,vibrant colors,warm and cheerful.,f1.4 50mm,commercial photo style,with text around is 'Chasing the sun on my Vespa nothing but the open road ahead'", "playful", 40],
["""Badminton is not just about winning, itβs about daring to challenge the limits of speed and precision. Itβs a game where every strike is a test of reflexes, every point a moment of courage. To play badminton is to engage in a battle of endurance, strategy, and passion.""", "minimalist", 50],
],
inputs=[single_prompt, single_style, single_steps],
label="Quick Examples"
)
with gr.Column():
single_output = gr.Image(
label="Generated Image", type="filepath")
single_status = gr.Textbox(
label="Status", lines=3, interactive=False)
with gr.TabItem("π A/B Testing Batch"):
gr.Markdown("""
### Generate Strategic Variations for Testing
Create different versions that test specific elements to optimize your content performance.
Each variation tests a different hypothesis about what works best for your audience.
""")
with gr.Row():
with gr.Column():
batch_prompt = gr.Textbox(
label="Base Content Prompt",
placeholder="Describe your core content idea...\nExample: Professional announcement for new product launch",
lines=3
)
batch_variation_type = gr.Dropdown(
choices=[
("π¨ Mixed Strategy (Recommended)", "mixed"),
("π Color Psychology Test", "color_schemes"),
("π Layout & Composition Test", "composition_styles"),
("π Emotional Tone Test", "emotional_tones"),
("π± Platform Optimization Test", "social_media"),
("ποΈ Attention-Grabbing Test", "engagement_hooks"),
("π·οΈ Brand Positioning Test", "brand_positioning")
],
value="mixed",
label="Testing Strategy",
info="Choose what aspect you want to test"
)
with gr.Row():
batch_count = gr.Slider(
2, 5, 3,
step=1,
label="Number of Variations",
info="How many different versions to generate"
)
batch_steps = gr.Slider(
10, 100, 40,
label="Quality (Inference Steps)",info="Lower steps for quick testing")
batch_btn = gr.Button(
"π Generate Variations", variant="primary", size="lg")
strategy_info = gr.Markdown("""
**π‘ Current Strategy:** Mixed approach testing multiple variables
**What this tests:** Different colors, layouts, and styles to find what works best
**How to use results:** Post each variation and compare engagement metrics
""")
with gr.Column():
batch_output = gr.Gallery(
label="Generated Test Variations",
columns=2,
height="auto"
)
batch_status = gr.Textbox(
label="Variation Details", lines=6, interactive=False)
with gr.Accordion("π A/B Testing Guide",open=False):
gr.Markdown("""
**Step 1:** Generate variations above
**Step 2:** Post each variation to your platform
**Step 3:** Track these metrics for each:
- Engagement rate (likes, comments, shares)
- Click-through rate (if applicable)
- Reach and impressions
- Save/bookmark rate
**Step 4:** Use the best performer for future content
**π‘ Pro Tips:**
- Test one element at a time for clear results
- Run tests for at least 7 days
- Use the same posting time and hashtags
- Need 1000+ views per variation for statistical significance
""")
with gr.TabItem("π± Social Media Pack"):
gr.Markdown("""
### Generate Platform-Optimized Images
Create perfectly sized images for multiple social media platforms at once.
""")
with gr.Row():
with gr.Column():
social_prompt = gr.Textbox(
label="Content Prompt",
placeholder="Describe your social media content...\nExample: Exciting announcement for new product launch",
lines=3
)
social_platforms = gr.CheckboxGroup(
choices=[
("Instagram Post (1080x1080)", "instagram_post"),
("Instagram Story (1080x1920)", "instagram_story"),
("Twitter Post (1200x675)", "twitter_post"),
("LinkedIn Post (1200x1200)", "linkedin_post"),
("Facebook Cover (1200x630)", "facebook_cover"),
("YouTube Thumbnail (1280x720)", "youtube_thumbnail")
],
value=["instagram_post", "twitter_post"],
label="Select Platforms",
info="Each platform will get an optimized image"
)
social_steps = gr.Slider(
10, 100, 50,
label="Quality (Inference Steps)"
)
social_btn = gr.Button(
"π± Generate Social Pack", variant="primary", size="lg")
with gr.Column():
social_output = gr.Gallery(
label="Platform-Optimized Images",
columns=2,
height="auto"
)
social_status = gr.Textbox(
label="Status", lines=4, interactive=False)
with gr.TabItem("π€ AI Prompt Assistant"):
with gr.Column():
gr.Markdown("### π€ AI-Powered Prompt Creation")
with gr.Accordion("π‘ How This Works", open=False):
gr.Markdown("""
**Simple 3-step process:**
1. Describe what you want in plain English
2. AI creates an optimized prompt
3. Generate your professional image
""")
with gr.Row():
with gr.Column(scale=1, min_width=300):
ai_user_input = gr.Textbox(
label="What do you want to create?",
placeholder="Example: A hero image for my new eco-friendly water bottle product launch",
lines=4,
info="Describe your vision in plain language"
)
with gr.Group():
gr.Markdown("#### Settings")
ai_context = gr.Dropdown(
choices=[
("General Marketing", "marketing"),
("Product Photography", "product"),
("Social Media Post", "social"),
("Blog/Article Header", "blog"),
("Event Promotion", "event"),
("Brand Identity", "brand")
],
value="marketing",
label="Content Type",
info="What are you creating?"
)
ai_style = gr.Dropdown(
choices=[
("Professional", "professional"),
("Playful & Fun", "playful"),
("Minimalist", "minimalist"),
("Luxury", "luxury"),
("Tech/Modern", "tech"),
("Natural/Organic", "natural")
],
value="professional",
label="Style",
info="What mood to convey?"
)
ai_platform = gr.Dropdown(
choices=[
("General Use", "general"),
("Instagram", "instagram"),
("Twitter/X", "twitter"),
("LinkedIn", "linkedin"),
("Facebook", "facebook"),
("Website Hero", "website")
],
value="general",
label="Platform",
info="Where will this be used?"
)
ai_generate_btn = gr.Button(
"π€ Generate AI Prompt",
variant="primary",
size="lg",
scale=1
)
with gr.Accordion("π Example Ideas", open=False):
gr.Examples(
examples=[
["A hero image for my new eco-friendly water bottle", "product", "natural", "website"],
["Announcement for our Black Friday sale", "social", "playful", "instagram"],
["Professional headshots for company about page", "marketing", "professional", "linkedin"],
["Blog header about AI in marketing", "blog", "tech", "general"],
["Product showcase for luxury watch collection", "product", "luxury", "instagram"]
],
inputs=[ai_user_input, ai_context, ai_style, ai_platform],
label=None
)
with gr.Column(scale=1, min_width=300):
ai_generated_prompt = gr.Textbox(
label="AI-Generated Prompt",
lines=6,
interactive=True,
info="Edit this prompt if needed"
)
ai_status = gr.Textbox(
label="Status",
lines=2,
interactive=False
)
with gr.Row():
ai_use_prompt_btn = gr.Button(
"π¨ Generate Image",
variant="primary",
scale=2
)
ai_save_prompt_btn = gr.Button(
"πΎ Save to Single Tab",
variant="secondary",
scale=1
)
with gr.Accordion("π§ Advanced Prompt Refinement", open=False):
ai_improvement_request = gr.Textbox(
label="How to improve this prompt?",
placeholder="Example: Add more dramatic lighting, make it more colorful, include people",
lines=2
)
ai_improve_btn = gr.Button(
"β¨ Improve Prompt",
variant="secondary",
size="sm"
)
ai_preview_image = gr.Image(
label="Generated Image Preview",
type="filepath",
visible=False,
height=300
)
with gr.Accordion("π― Pro Tips for Better Results", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("""
**Be Specific About:**
- **Subject**: What's the main focus?
- **Setting**: Where is it happening?
- **Mood**: What feeling to convey?
- **Colors**: Any specific palette?
""")
with gr.Column():
gr.Markdown("""
**Good Examples:**
- β
"Minimalist product photo of smartphone on marble"
- β
"Vibrant Instagram post for summer sale"
- β "Product photo" (too vague)
- β "Social media post" (not specific)
""")
# Footer
gr.Markdown("""
---
### π οΈ Powered by:
- **Flux AI Model** - State-of-the-art image generation
- **Modal Labs** - GPU infrastructure
- **MCP Protocol** - Tool integration
- **Gradio** - User interface
Made with β€οΈ for content creators and marketers
""")
# Event handlers
single_btn.click(
single_image_generation,
inputs=[single_prompt, single_steps, single_style],
outputs=[single_output, single_status]
)
batch_btn.click(
enhanced_batch_generation,
inputs=[batch_prompt,batch_variation_type, batch_count, batch_steps],
outputs=[batch_output, batch_status]
)
batch_variation_type.change(
update_strategy_info,
inputs=[batch_variation_type],
outputs=[strategy_info]
)
social_btn.click(
social_media_generation,
inputs=[social_prompt, social_platforms, social_steps],
outputs=[social_output, social_status]
)
def generate_ai_prompt(user_input, context, style, platform):
"""Generate an optimized prompt using AI"""
if not marketing_tool.is_connected:
return "", "β οΈ MCP Server not connected. Please wait a few seconds and try again."
if not user_input.strip():
return "", "β οΈ Please describe what you want to create."
try:
request_id = f"ai_prompt_{time.time()}"
marketing_tool.request_queue.put((
"generate_prompt_with_ai",
{
"user_input": user_input,
"context": context,
"style": style,
"platform": platform
},
request_id
))
status, result = wait_for_result(request_id, timeout=60)
if status == "success":
result_data = json.loads(result)
if result_data.get("success"):
return result_data["prompt"], "β
AI prompt generated successfully!"
else:
return result_data.get("fallback_prompt", ""), f"β οΈ Using fallback prompt: {result_data.get('error', 'Unknown error')}"
else:
return "", f"β Error: {result}"
except Exception as e:
return "", f"β Error: {str(e)}"
ai_generate_btn.click(
generate_ai_prompt,
inputs=[ai_user_input, ai_context, ai_style, ai_platform],
outputs=[ai_generated_prompt, ai_status]
)
def improve_ai_prompt(current_prompt, improvement_request):
if not marketing_tool.is_connected:
return current_prompt, "β οΈ MCP Server not connected."
if not current_prompt.strip():
return "", "β οΈ No prompt to improve. Generate one first."
if not improvement_request.strip():
return current_prompt, "β οΈ Please describe how you'd like to improve the prompt."
try:
enhanced_base = f"{current_prompt}. {improvement_request}"
request_id = f"improve_prompt_{time.time()}"
marketing_tool.request_queue.put((
"enhance_prompt_with_details", # Use the same tool
{
"base_prompt": enhanced_base,
"enhancement_type": "detailed"
},
request_id
))
status, result = wait_for_result(request_id, timeout=60)
if status == "success":
if not result:
return current_prompt, "β οΈ Received empty response from server."
try:
result_data = json.loads(result)
if result_data.get("success"):
return result_data["enhanced_prompt"], "β
Prompt improved successfully!"
else:
return current_prompt, f"β οΈ Could not improve prompt: {result_data.get('error', 'Unknown error')}"
except json.JSONDecodeError as json_error:
print(f"JSON decode error: {json_error}")
print(f"Raw result: {repr(result)}")
return result if result else current_prompt, "β
Prompt improved (received as text)!"
else:
return current_prompt, f"β Error: {result}"
except Exception as e:
print(f"Exception in improve_ai_prompt: {str(e)}")
return current_prompt, f"β Error: {str(e)}"
ai_improve_btn.click(
improve_ai_prompt,
inputs=[ai_generated_prompt, ai_improvement_request],
outputs=[ai_generated_prompt, ai_status]
)
def generate_image_from_ai_prompt(prompt, show_preview=True):
if not prompt.strip():
return None, "β οΈ Please generate a prompt first."
image_path, status = single_image_generation(prompt, 50, "none")
if show_preview and image_path:
return gr.update(value=image_path, visible=True), status
else:
return gr.update(visible=False), status
ai_use_prompt_btn.click(
lambda prompt: generate_image_from_ai_prompt(prompt, True),
inputs=[ai_generated_prompt],
outputs=[ai_preview_image, ai_status]
)
ai_save_prompt_btn.click(
lambda prompt: (prompt, "β
Prompt copied to Single Image tab!"),
inputs=[ai_generated_prompt],
outputs=[single_prompt, ai_status]
).then(
lambda: gr.update(selected="πΌοΈ Single Image"),
outputs=[]
)
# Update connection status
def update_connection_status():
if marketing_tool.is_connected:
return "β
**Connected to MCP Server** - Ready to generate!"
else:
return "π Connecting to MCP server... (please wait)"
# Periodic status update
demo.load(update_connection_status, outputs=[connection_status])
if __name__ == "__main__":
print("Starting Marketing Content Generator...")
print("Please wait for MCP server to initialize...")
start_mcp_server()
time.sleep(5)
print("Launching Gradio interface...")
demo.launch(share=False, mcp_server=True)
|