from sklearn.model_selection import train_test_split import numpy as np from neural_network.opts import activation from neural_network.backprop import bp def init( X: np.array, hidden_size: int ) -> dict: """ returns a dictionary containing randomly initialized weights and biases to start off the neural_network """ return { "w1": np.random.randn(X.shape[1], hidden_size), "b1": np.zeros((1, hidden_size)), "w2": np.random.randn(hidden_size, 1), "b2": np.zeros((1, 1)), } def main( X: np.array, y: np.array, args, ) -> None: wb = init(X, args["hidden_size"]) act = activation[args["activation_func"]] args["activation_func"] = act["main"] args["func_prime"] = act["prime"] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=8675309 ) model = bp(X_train, y_train, wb, args) # evaluate the model and return final results model.eval( X_test=X_test, y_test=y_test, ) return model.to_dict()