package nn import ( "math" "math/rand" ) func (nn *NN) TrainTestSplit() { // now we split the data into training // and testing based on user specified // nn.TestSize. nRows := nn.Df.Nrow() testRows := int(math.Floor(float64(nRows) * nn.TestSize)) // subset the testing data // randomly select trainRows number of rows randStrt := rand.Intn(int(math.Floor(float64(nRows) * nn.TestSize))) test := nn.Df.Subset([]int{randStrt, randStrt + testRows}) // use what is left for training allIndices := make([]int, nRows) for i := range allIndices { allIndices[i] = i } // Remove the test indices using slice append and variadic parameter trainIndices := append(allIndices[:randStrt], allIndices[randStrt+testRows:]...) // Create the train DataFrame using the trainIndices train := nn.Df.Subset(trainIndices) XTrain := train.Select(nn.Features) YTrain := train.Select(nn.Target) XTest := test.Select(nn.Features) YTest := test.Select(nn.Target) nn.XTrain = &XTrain nn.YTrain = &YTrain nn.XTest = &XTest nn.YTest = &YTest }