Spaces:
Sleeping
Sleeping
Commit
·
fbe515e
1
Parent(s):
2c9d2bf
believe to have created a function to build a svg plot and send it over the network
Browse files- neural_network/main.py +4 -0
- neural_network/neural_network.py +2 -0
- neural_network/plot.py +21 -0
neural_network/main.py
CHANGED
@@ -3,6 +3,7 @@ import numpy as np
|
|
3 |
|
4 |
from neural_network.opts import activation
|
5 |
from neural_network.backprop import bp
|
|
|
6 |
|
7 |
|
8 |
def init(X: np.array, hidden_size: int) -> dict:
|
@@ -46,4 +47,7 @@ def main(
|
|
46 |
X_test=X_test,
|
47 |
y_test=y_test,
|
48 |
)
|
|
|
|
|
|
|
49 |
return model.to_dict()
|
|
|
3 |
|
4 |
from neural_network.opts import activation
|
5 |
from neural_network.backprop import bp
|
6 |
+
from neural_network.plot import plot
|
7 |
|
8 |
|
9 |
def init(X: np.array, hidden_size: int) -> dict:
|
|
|
47 |
X_test=X_test,
|
48 |
y_test=y_test,
|
49 |
)
|
50 |
+
|
51 |
+
plot(model=model)
|
52 |
+
|
53 |
return model.to_dict()
|
neural_network/neural_network.py
CHANGED
@@ -19,6 +19,7 @@ class NeuralNetwork:
|
|
19 |
loss_history: list = field(
|
20 |
default_factory=lambda: [],
|
21 |
)
|
|
|
22 |
|
23 |
def predict(self, x: np.array) -> np.array:
|
24 |
n1 = self.compute_node(x, self.w1, self.b1, self.activation_func)
|
@@ -51,4 +52,5 @@ class NeuralNetwork:
|
|
51 |
"hidden_size": self.hidden_size,
|
52 |
"mse": self.mse,
|
53 |
"loss_history": self.loss_history,
|
|
|
54 |
}
|
|
|
19 |
loss_history: list = field(
|
20 |
default_factory=lambda: [],
|
21 |
)
|
22 |
+
plot = None
|
23 |
|
24 |
def predict(self, x: np.array) -> np.array:
|
25 |
n1 = self.compute_node(x, self.w1, self.b1, self.activation_func)
|
|
|
52 |
"hidden_size": self.hidden_size,
|
53 |
"mse": self.mse,
|
54 |
"loss_history": self.loss_history,
|
55 |
+
"plot": self.plot,
|
56 |
}
|
neural_network/plot.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from neural_network.neural_network import NeuralNetwork
|
8 |
+
|
9 |
+
matplotlib.use("Agg")
|
10 |
+
|
11 |
+
def plot(model: NeuralNetwork) -> None:
|
12 |
+
_ = sns.scatterplot(
|
13 |
+
x=np.arange(len(model.loss_history)),
|
14 |
+
y=model.loss_history,
|
15 |
+
)
|
16 |
+
buf = io.BytesIO()
|
17 |
+
plt.savefig(buf, format="svg")
|
18 |
+
plt.clf()
|
19 |
+
buf.seek(0)
|
20 |
+
plot_data = base64.b64encode(buf.getvalue()).decode("utf-8")
|
21 |
+
model.plot = plot_data
|