Spaces:
Sleeping
Sleeping
Commit
·
6377159
1
Parent(s):
137390c
trying to move forwards with the iris dataset
Browse files- app.py +16 -10
- dataset/iris.py +29 -0
- neural_network/main.py +5 -10
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from flask import Flask, request, jsonify, make_response, render_template
|
2 |
|
3 |
from dataset.random import random_dataset
|
|
|
4 |
from opts import options
|
5 |
|
6 |
app = Flask(
|
@@ -29,23 +30,28 @@ def index():
|
|
29 |
if request.method == "GET":
|
30 |
return render_template("index.html")
|
31 |
|
32 |
-
|
33 |
-
error_message = not_valid(params=params)
|
34 |
if error_message:
|
35 |
return make_response(error_message, 400)
|
36 |
|
37 |
# parse arguments
|
38 |
-
algorithm = options[
|
39 |
-
args =
|
40 |
|
41 |
# in the future instead of a random data set
|
42 |
# we should do a more real one like palmer penguins
|
43 |
-
|
44 |
-
|
45 |
-
return jsonify(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
-
app.run(
|
50 |
-
debug=False,
|
51 |
-
)
|
|
|
1 |
from flask import Flask, request, jsonify, make_response, render_template
|
2 |
|
3 |
from dataset.random import random_dataset
|
4 |
+
from dataset.iris import iris
|
5 |
from opts import options
|
6 |
|
7 |
app = Flask(
|
|
|
30 |
if request.method == "GET":
|
31 |
return render_template("index.html")
|
32 |
|
33 |
+
error_message = not_valid(params=request.json)
|
|
|
34 |
if error_message:
|
35 |
return make_response(error_message, 400)
|
36 |
|
37 |
# parse arguments
|
38 |
+
algorithm = options[request.json["algorithm"]]
|
39 |
+
args = request.json["arguments"]
|
40 |
|
41 |
# in the future instead of a random data set
|
42 |
# we should do a more real one like palmer penguins
|
43 |
+
|
44 |
+
X_train, X_test, y_train, y_test = iris()
|
45 |
+
return jsonify(
|
46 |
+
algorithm(
|
47 |
+
X_train=X_train,
|
48 |
+
y_train=y_train,
|
49 |
+
X_test=X_test,
|
50 |
+
y_test=y_test,
|
51 |
+
args=args,
|
52 |
+
)
|
53 |
+
)
|
54 |
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
+
app.run(debug=False)
|
|
|
|
dataset/iris.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.datasets import load_iris
|
2 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def iris() -> tuple[np.array]:
|
8 |
+
"""
|
9 |
+
returns a tuple of numpy arrays containing the
|
10 |
+
iris dataset split into training and testing sets
|
11 |
+
after being normalized and one-hot encoded
|
12 |
+
"""
|
13 |
+
iris = load_iris()
|
14 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
15 |
+
iris.data,
|
16 |
+
iris.target,
|
17 |
+
test_size=0.3,
|
18 |
+
random_state=8675309,
|
19 |
+
)
|
20 |
+
scaler = StandardScaler()
|
21 |
+
X_train, X_test = scaler.fit_transform(
|
22 |
+
X_train
|
23 |
+
), scaler.fit_transform(
|
24 |
+
X_test
|
25 |
+
)
|
26 |
+
|
27 |
+
y_train = OneHotEncoder().fit_transform(y_train.reshape(-1, 1)).toarray()
|
28 |
+
y_test = OneHotEncoder().fit_transform(y_test.reshape(-1, 1)).toarray()
|
29 |
+
return X_train, X_test, y_train, y_test
|
neural_network/main.py
CHANGED
@@ -22,21 +22,16 @@ def init(
|
|
22 |
|
23 |
|
24 |
def main(
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
args,
|
28 |
) -> None:
|
29 |
-
wb = init(
|
30 |
act = activation[args["activation_func"]]
|
31 |
args["activation_func"] = act["main"]
|
32 |
args["func_prime"] = act["prime"]
|
33 |
-
|
34 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
35 |
-
X,
|
36 |
-
y,
|
37 |
-
test_size=0.3,
|
38 |
-
random_state=8675309
|
39 |
-
)
|
40 |
model = bp(X_train, y_train, wb, args)
|
41 |
|
42 |
# evaluate the model and return final results
|
|
|
22 |
|
23 |
|
24 |
def main(
|
25 |
+
X_train: np.array,
|
26 |
+
y_train: np.array,
|
27 |
+
X_test: np.array,
|
28 |
+
y_test: np.array,
|
29 |
args,
|
30 |
) -> None:
|
31 |
+
wb = init(X_train, args["hidden_size"])
|
32 |
act = activation[args["activation_func"]]
|
33 |
args["activation_func"] = act["main"]
|
34 |
args["func_prime"] = act["prime"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
model = bp(X_train, y_train, wb, args)
|
36 |
|
37 |
# evaluate the model and return final results
|