Jensen-holm commited on
Commit
3563daa
·
1 Parent(s): f9846ff

successfully returning data on how the neural network performed

Browse files
Files changed (2) hide show
  1. app.py +1 -2
  2. neural_network/neural_network.py +9 -6
app.py CHANGED
@@ -28,7 +28,6 @@ def not_valid(params: dict):
28
  @app.route("/", methods=["GET"])
29
  def index():
30
  params = request.json
31
- print(params)
32
  error_message = not_valid(params=params)
33
  if error_message:
34
  return make_response(error_message, 400)
@@ -44,7 +43,7 @@ def index():
44
  return jsonify(model)
45
 
46
 
47
- if __name__ == '__main__':
48
  app.run(
49
  debug=True,
50
  )
 
28
  @app.route("/", methods=["GET"])
29
  def index():
30
  params = request.json
 
31
  error_message = not_valid(params=params)
32
  if error_message:
33
  return make_response(error_message, 400)
 
43
  return jsonify(model)
44
 
45
 
46
+ if __name__ == "__main__":
47
  app.run(
48
  debug=True,
49
  )
neural_network/neural_network.py CHANGED
@@ -25,6 +25,7 @@ class NeuralNetwork:
25
  return self.compute_node(n1, self.w2, self.b2, self.activation_func)
26
 
27
  def set_loss_hist(self, loss_hist: list) -> None:
 
28
  self.loss_history = loss_hist
29
 
30
  def eval(self, X_test, y_test) -> None:
@@ -35,18 +36,20 @@ class NeuralNetwork:
35
  return func(np.dot(arr, w) + b)
36
 
37
  @classmethod
38
- def from_dict(cls, dct):
39
  return cls(**dct)
40
 
41
- def to_dict(self) -> dict:
42
  return {
43
- "w1": list(self.w1),
44
- "w2": list(self.w2),
45
- "b1": list(self.b1),
46
- "b2": list(self.b2),
47
  "epochs": self.epochs,
48
  "learning_rate": self.learning_rate,
49
  "activation_func": self.activation_func.__name__,
50
  "func_prime": self.func_prime.__name__,
51
  "hidden_size": self.hidden_size,
 
 
52
  }
 
25
  return self.compute_node(n1, self.w2, self.b2, self.activation_func)
26
 
27
  def set_loss_hist(self, loss_hist: list) -> None:
28
+ assert (isinstance(loss_hist, list))
29
  self.loss_history = loss_hist
30
 
31
  def eval(self, X_test, y_test) -> None:
 
36
  return func(np.dot(arr, w) + b)
37
 
38
  @classmethod
39
+ def from_dict(cls, dct) -> "NeuralNetwork":
40
  return cls(**dct)
41
 
42
+ def to_dict(self) -> dict[str, list | int | float | str]:
43
  return {
44
+ "w1": self.w1.tolist(),
45
+ "w2": self.w2.tolist(),
46
+ "b1": self.b1.tolist(),
47
+ "b2": self.b2.tolist(),
48
  "epochs": self.epochs,
49
  "learning_rate": self.learning_rate,
50
  "activation_func": self.activation_func.__name__,
51
  "func_prime": self.func_prime.__name__,
52
  "hidden_size": self.hidden_size,
53
+ "mse": self.mse,
54
+ "loss_history": self.loss_history,
55
  }