Spaces:
Sleeping
Sleeping
Commit
·
303df47
1
Parent(s):
8ea5c07
adding accuracy score tracking
Browse files- app.py +4 -1
- nn/nn.py +6 -0
- nn/train.py +7 -3
app.py
CHANGED
@@ -45,4 +45,7 @@ def neural_net():
|
|
45 |
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
-
app.run(
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
+
app.run(
|
49 |
+
port=4000,
|
50 |
+
debug=True,
|
51 |
+
)
|
nn/nn.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from typing import Callable
|
|
|
2 |
import pandas as pd
|
3 |
|
4 |
|
@@ -41,6 +42,11 @@ class NN:
|
|
41 |
self.input_size = len(self.X.columns)
|
42 |
self.output_size = len(self.y_dummy.columns)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
44 |
def set_func(self, f: Callable) -> None:
|
45 |
assert isinstance(f, Callable)
|
46 |
self.func = f
|
|
|
1 |
from typing import Callable
|
2 |
+
from sklearn.preprocessing import StandardScaler
|
3 |
import pandas as pd
|
4 |
|
5 |
|
|
|
42 |
self.input_size = len(self.X.columns)
|
43 |
self.output_size = len(self.y_dummy.columns)
|
44 |
|
45 |
+
def normalize(self):
|
46 |
+
scaler = StandardScaler()
|
47 |
+
self.y_dummy = scaler.fit_transform(self.y_dummy)
|
48 |
+
self.X = scaler.fit_transform(self.X)
|
49 |
+
|
50 |
def set_func(self, f: Callable) -> None:
|
51 |
assert isinstance(f, Callable)
|
52 |
self.func = f
|
nn/train.py
CHANGED
@@ -6,7 +6,7 @@ import numpy as np
|
|
6 |
|
7 |
|
8 |
def init_weights_biases(nn: NN):
|
9 |
-
|
10 |
bh = np.zeros((1, nn.hidden_size))
|
11 |
bo = np.zeros((1, nn.output_size))
|
12 |
wh = np.random.randn(nn.input_size, nn.hidden_size) * \
|
@@ -18,14 +18,15 @@ def init_weights_biases(nn: NN):
|
|
18 |
|
19 |
def train(nn: NN) -> dict:
|
20 |
wh, wo, bh, bo = init_weights_biases(nn=nn)
|
|
|
21 |
X_train, X_test, y_train, y_test = train_test_split(
|
22 |
nn.X.to_numpy(),
|
23 |
nn.y_dummy.to_numpy(),
|
24 |
test_size=nn.test_size,
|
25 |
-
|
26 |
)
|
27 |
|
28 |
-
|
29 |
loss_hist: list[float] = []
|
30 |
for _ in range(nn.epochs):
|
31 |
# compute hidden output
|
@@ -46,6 +47,8 @@ def train(nn: NN) -> dict:
|
|
46 |
# compute error & store it
|
47 |
error = y_hat - y_train
|
48 |
loss = log_loss(y_true=y_train, y_pred=y_hat)
|
|
|
|
|
49 |
loss_hist.append(loss)
|
50 |
|
51 |
# compute derivatives of weights & biases
|
@@ -84,6 +87,7 @@ def train(nn: NN) -> dict:
|
|
84 |
"loss_hist": loss_hist,
|
85 |
"log_loss": log_loss(y_true=y_test, y_pred=y_hat),
|
86 |
"accuracy": accuracy_score(y_true=y_test, y_pred=y_hat),
|
|
|
87 |
}
|
88 |
|
89 |
|
|
|
6 |
|
7 |
|
8 |
def init_weights_biases(nn: NN):
|
9 |
+
np.random.seed(0)
|
10 |
bh = np.zeros((1, nn.hidden_size))
|
11 |
bo = np.zeros((1, nn.output_size))
|
12 |
wh = np.random.randn(nn.input_size, nn.hidden_size) * \
|
|
|
18 |
|
19 |
def train(nn: NN) -> dict:
|
20 |
wh, wo, bh, bo = init_weights_biases(nn=nn)
|
21 |
+
|
22 |
X_train, X_test, y_train, y_test = train_test_split(
|
23 |
nn.X.to_numpy(),
|
24 |
nn.y_dummy.to_numpy(),
|
25 |
test_size=nn.test_size,
|
26 |
+
random_state=0,
|
27 |
)
|
28 |
|
29 |
+
accuracy_scores = []
|
30 |
loss_hist: list[float] = []
|
31 |
for _ in range(nn.epochs):
|
32 |
# compute hidden output
|
|
|
47 |
# compute error & store it
|
48 |
error = y_hat - y_train
|
49 |
loss = log_loss(y_true=y_train, y_pred=y_hat)
|
50 |
+
accuracy = accuracy_score(y_true=y_train, y_pred=y_hat)
|
51 |
+
accuracy_scores.append(accuracy)
|
52 |
loss_hist.append(loss)
|
53 |
|
54 |
# compute derivatives of weights & biases
|
|
|
87 |
"loss_hist": loss_hist,
|
88 |
"log_loss": log_loss(y_true=y_test, y_pred=y_hat),
|
89 |
"accuracy": accuracy_score(y_true=y_test, y_pred=y_hat),
|
90 |
+
"accuracy_scores": accuracy_scores,
|
91 |
}
|
92 |
|
93 |
|