Spaces:
Sleeping
Sleeping
import numpy as np | |
from neural_network.forwardprop import fp | |
from neural_network.backprop import bp | |
def get_args(): | |
""" | |
returns a dictionary containing | |
the arguments to be passed to | |
the main function | |
""" | |
return { | |
"epochs": int(input("Enter the number of epochs: ")), | |
"hidden_size": int(input("Enter the number of hidden nodes: ")), | |
"learning_rate": float(input("Enter the learning rate: ")), | |
"activation_func": input("Enter the activation function: "), | |
} | |
def init(X: np.array, y: np.array, hidden_size: int) -> dict: | |
""" | |
returns a dictionary containing randomly initialized | |
weights and biases to start off the neural_network | |
""" | |
return { | |
"W1": np.random.randn(X.shape[1], hidden_size), | |
"b1": np.zeros((1, hidden_size)), | |
"W2": np.random.randn(hidden_size, 1), | |
"b2": np.zeros((1, 1)), | |
} | |
def main( | |
X: np.array, | |
y: np.array, | |
epochs: int, | |
hidden_size: int, | |
learning_rate: float, | |
activation_func: str, | |
) -> None: | |
wb = init(X, y, hidden_size) | |
for e in range(epochs): | |
fp() | |
bp() | |
# update weights and biases | |