Spaces:
Sleeping
Sleeping
package nn | |
import ( | |
"fmt" | |
"math/rand" | |
"strings" | |
"github.com/go-gota/gota/dataframe" | |
"github.com/gofiber/fiber/v2" | |
) | |
type NN struct { | |
CSVData string `json:"csv_data"` | |
Features []string `json:"features"` | |
Target string `json:"target"` | |
Epochs int `json:"epochs"` | |
HiddenSize int `json:"hidden_size"` | |
LearningRate float64 `json:"learning_rate"` | |
ActivationFunc string `json:"activation"` | |
TestSize float64 `json:"test_size"` | |
Df *dataframe.DataFrame | |
XTrain dataframe.DataFrame | |
YTrain dataframe.DataFrame | |
XTest dataframe.DataFrame | |
YTest dataframe.DataFrame | |
Wh [][]float64 | |
Bh []float64 | |
Wo [][]float64 | |
Bo []float64 | |
} | |
func NewNN(c *fiber.Ctx) (*NN, error) { | |
newNN := new(NN) | |
err := c.BodyParser(newNN) | |
if err != nil { | |
return nil, fmt.Errorf("invalid JSON data: %v", err) | |
} | |
df := dataframe.ReadCSV(strings.NewReader(newNN.CSVData)) | |
newNN.Df = &df | |
return newNN, nil | |
} | |
func (nn *NN) Train() { | |
// train test split the data | |
_, _, _, _ = nn.trainTestSplit() | |
nn.InitWnB() | |
// iterate n times where n = nn.Epochs | |
// use backprop algorithm on each iteration | |
// to fit the model to the data | |
for i := 0; i < nn.Epochs; i++ { | |
} | |
} | |
func (nn *NN) InitWnB() { | |
// randomly initialize weights and biases to start | |
inputSize := len(nn.Features) | |
hiddenSize := nn.HiddenSize | |
outputSize := 1 // only predicting one thing | |
// input hidden layer weights | |
wh := make([][]float64, inputSize) | |
for i := range wh { | |
wh[i] = make([]float64, hiddenSize) | |
for j := range wh[i] { | |
wh[i][j] = rand.Float64() - 0.5 | |
} | |
} | |
bh := make([]float64, hiddenSize) | |
for i := range bh { | |
bh[i] = rand.Float64() - 0.5 | |
} | |
// initialize weights and biases for hidden -> output layer | |
wo := make([][]float64, hiddenSize) | |
for i := range wo { | |
wo[i] = make([]float64, outputSize) | |
for j := range wo[i] { | |
wo[i][j] = rand.Float64() - 0.5 | |
} | |
} | |
bo := make([]float64, outputSize) | |
for i := range bo { | |
bo[i] = rand.Float64() - 0.5 | |
} | |
nn.Wh = wh | |
nn.Bh = bh | |
nn.Wo = wo | |
nn.Bo = bo | |
} | |