Numpy-Neuron / nn /split.go
Jensen-holm's picture
added trainTestSplit() function
554811e
raw
history blame
1.02 kB
package nn
import (
"math"
"math/rand"
)
// implement train test split function
func (nn *NN) trainTestSplit() {
// now we split the data into training
// and testing based on user specified
// nn.TestSize.
nRows := nn.Df.Nrow()
testRows := int(math.Floor(float64(nRows) * nn.TestSize))
// subset the testing data
// randomly select trainRows number of rows
randStrt := rand.Intn(int(math.Floor(float64(nRows) * nn.TestSize)))
test := nn.Df.Subset([]int{randStrt, randStrt + testRows})
// use what is left for training
allIndices := make([]int, nRows)
for i := range allIndices {
allIndices[i] = i
}
// Remove the test indices using slice append and variadic parameter
trainIndices := append(allIndices[:randStrt], allIndices[randStrt+testRows:]...)
// Create the train DataFrame using the trainIndices
train := nn.Df.Subset(trainIndices)
nn.XTrain = train.Select(nn.Features)
nn.YTrain = train.Select(nn.Target)
nn.XTest = test.Select(nn.Features)
nn.YTest = test.Select(nn.Target)
}