Spaces:
Sleeping
Sleeping
package nn | |
import ( | |
"math" | |
"math/rand" | |
) | |
// implement train test split function | |
func (nn *NN) trainTestSplit() { | |
// now we split the data into training | |
// and testing based on user specified | |
// nn.TestSize. | |
nRows := nn.Df.Nrow() | |
testRows := int(math.Floor(float64(nRows) * nn.TestSize)) | |
// subset the testing data | |
// randomly select trainRows number of rows | |
randStrt := rand.Intn(int(math.Floor(float64(nRows) * nn.TestSize))) | |
test := nn.Df.Subset([]int{randStrt, randStrt + testRows}) | |
// use what is left for training | |
allIndices := make([]int, nRows) | |
for i := range allIndices { | |
allIndices[i] = i | |
} | |
// Remove the test indices using slice append and variadic parameter | |
trainIndices := append(allIndices[:randStrt], allIndices[randStrt+testRows:]...) | |
// Create the train DataFrame using the trainIndices | |
train := nn.Df.Subset(trainIndices) | |
nn.XTrain = train.Select(nn.Features) | |
nn.YTrain = train.Select(nn.Target) | |
nn.XTest = test.Select(nn.Features) | |
nn.YTest = test.Select(nn.Target) | |
} | |