Spaces:
Sleeping
Sleeping

we should try to do this with regression on a simple dataset from the internet somewhere because I think it is hard to see how well it is doing with completley random data
4175aca
import numpy as np | |
from typing import Callable | |
class Network: | |
def __init__(self, final_wb: dict[str, np.array], activation_func: Callable): | |
self.func = activation_func | |
self.final_wb = final_wb | |
self.w1 = final_wb["W1"] | |
self.w2 = final_wb["W2"] | |
self.b1 = final_wb["b1"] | |
self.b2 = final_wb["b2"] | |
def predict(self, x: np.array) -> np.array: | |
n1 = self.compute_node(x, self.w1, self.b1, self.func) | |
return self.compute_node(n1, self.w2, self.b2, self.func) | |
def compute_node(arr, w, b, func): | |
return func(np.dot(arr, w) + b) | |