Numpy-Neuron / nn /split.go
Jensen-holm's picture
stuck on working with computeOutput function, getting dim error every
0987346
raw
history blame
1.64 kB
package nn
import (
"math"
"math/rand"
"github.com/go-gota/gota/dataframe"
"gonum.org/v1/gonum/mat"
)
func (nn *NN) TrainTestSplit() {
// now we split the data into training
// and testing based on user specified
// nn.TestSize.
nRows := nn.Df.Nrow()
testRows := int(math.Floor(float64(nRows) * nn.TestSize))
// subset the testing data
// randomly select trainRows number of rows
randStrt := rand.Intn(int(math.Floor(float64(nRows) * nn.TestSize)))
test := nn.Df.Subset([]int{randStrt, randStrt + testRows})
// use what is left for training
allIndices := make([]int, nRows)
for i := range allIndices {
allIndices[i] = i
}
// Remove the test indices using slice append and variadic parameter
trainIndices := append(allIndices[:randStrt], allIndices[randStrt+testRows:]...)
// Create the train DataFrame using the trainIndices
train := nn.Df.Subset(trainIndices)
XTrain := train.Select(nn.Features)
YTrain := train.Select(nn.Target)
XTest := test.Select(nn.Features)
YTest := test.Select(nn.Target)
// to make linear algebra easier & faster,
// we convert these dataframes that we are
// performing potentially expensive computations
// on into gonum matrices since we no longer need the
// column names.
nn.XTrain = df2mat(&XTrain)
nn.YTrain = df2mat(&YTrain)
nn.XTest = df2mat(&XTest)
nn.YTest = df2mat(&YTest)
}
// df2mat -> converts gota dataframe into gonum matrix
func df2mat(df *dataframe.DataFrame) *mat.Dense {
m := mat.NewDense(df.Nrow(), df.Ncol(), nil)
for i := 0; i < df.Nrow(); i++ {
for j := 0; j < df.Ncol(); j++ {
m.Set(i, j, df.Elem(i, j).Float())
}
}
return m
}