Spaces:
Sleeping
Sleeping
package nn | |
import ( | |
"fmt" | |
"math/rand" | |
"strings" | |
"github.com/go-gota/gota/dataframe" | |
"github.com/gofiber/fiber/v2" | |
"gonum.org/v1/gonum/mat" | |
) | |
type NN struct { | |
// attributes set by request | |
CSVData string `json:"csv_data"` | |
Features []string `json:"features"` | |
Target string `json:"target"` | |
Epochs int `json:"epochs"` | |
HiddenSize int `json:"hidden_size"` | |
LearningRate float64 `json:"learning_rate"` | |
Activation string `json:"activation"` | |
TestSize float64 `json:"test_size"` | |
// attributes set after args above are parsed | |
ActivationFunc *func(float64) float64 | |
Df *dataframe.DataFrame | |
XTrain *mat.Dense | |
YTrain *mat.Dense | |
XTest *mat.Dense | |
YTest *mat.Dense | |
Wh *mat.Dense | |
Bh *mat.Dense | |
Wo *mat.Dense | |
Bo *mat.Dense | |
} | |
func NewNN(c *fiber.Ctx) (*NN, error) { | |
newNN := new(NN) | |
err := c.BodyParser(newNN) | |
if err != nil { | |
return nil, fmt.Errorf("invalid JSON data: %v", err) | |
} | |
df := dataframe.ReadCSV(strings.NewReader(newNN.CSVData)) | |
activation := ActivationMap[newNN.Activation] | |
newNN.Df = &df | |
newNN.ActivationFunc = &activation | |
return newNN, nil | |
} | |
func (nn *NN) InitWnB() { | |
// randomly initialize weights and biases to start | |
inputSize := len(nn.Features) | |
hiddenSize := nn.HiddenSize | |
outputSize := 1 // only predicting one thing | |
// Initialize input hidden layer weights as a Gonum matrix | |
wh := mat.NewDense(inputSize, hiddenSize, nil) | |
wh.Apply(func(i, j int, v float64) float64 { | |
return rand.Float64() - 0.5 | |
}, wh) | |
// Initialize hidden layer bias as a Gonum matrix | |
bh := mat.NewDense(1, hiddenSize, nil) | |
bh.Apply(func(i, j int, v float64) float64 { | |
return rand.Float64() - 0.5 | |
}, bh) | |
// Initialize weights and biases for hidden -> output layer as Gonum matrices | |
wo := mat.NewDense(hiddenSize, outputSize, nil) | |
wo.Apply(func(i, j int, v float64) float64 { | |
return rand.Float64() - 0.5 | |
}, wo) | |
bo := mat.NewDense(1, outputSize, nil) | |
bo.Apply(func(i, j int, v float64) float64 { | |
return rand.Float64() - 0.5 | |
}, bo) | |
nn.Wh = wh | |
nn.Bh = bh | |
nn.Wo = wo | |
nn.Bo = bo | |
} | |