Spaces:
Sleeping
Sleeping
File size: 6,721 Bytes
6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 29cce3f 6307b4f b471057 6d0453c 6307b4f 6d0453c b471057 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f 6d0453c 6307b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
from sklearn import datasets
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
import numpy as np
import gradio as gr
import nn # custom neural network module
from vis import ( # classification visualization funcitons
show_digits,
hits_and_misses,
loss_history_plt,
make_confidence_label,
)
def _preprocess_digits(
seed: int,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray()
X_train, X_test, y_train, y_test = train_test_split(
data,
y,
test_size=0.2,
random_state=seed,
)
return X_train, X_test, y_train, y_test
X_train, X_test, y_train, y_test = _preprocess_digits(seed=1)
def classification(
Seed: int = 0,
Hidden_Layer_Activation: str = "Relu",
Activation_Func: str = "SoftMax",
Loss_Func: str = "CrossEntropyWithLogitsLoss",
Epochs: int = 100,
Hidden_Size: int = 8,
Learning_Rate: float = 0.001,
) -> tuple[gr.Plot, gr.Plot, gr.Label]:
assert Activation_Func in nn.ACTIVATIONS
assert Hidden_Layer_Activation in nn.ACTIVATIONS
assert Loss_Func in nn.LOSSES
classifier = nn.NN(
epochs=Epochs,
learning_rate=Learning_Rate,
hidden_activation_fn=nn.ACTIVATIONS[Hidden_Layer_Activation],
activation_fn=nn.ACTIVATIONS[Activation_Func],
loss_fn=nn.LOSSES[Loss_Func],
hidden_size=Hidden_Size,
input_size=64, # 8x8 image of pixels
output_size=10, # digits 0-9
seed=Seed,
)
classifier.train(X_train=X_train, y_train=y_train)
pred = classifier.predict(X_test=X_test)
hits_and_misses_fig = hits_and_misses(y_pred=pred, y_true=y_test)
loss_fig = loss_history_plt(
loss_history=classifier._loss_history,
loss_fn_name=classifier.loss_fn.__class__.__name__,
)
label_dict = make_confidence_label(y_pred=pred, y_test=y_test)
return (
gr.Plot(loss_fig, show_label=False),
gr.Plot(hits_and_misses_fig, show_label=False),
gr.Label(label_dict, label="Classification Confidence Rankings"),
)
if __name__ == "__main__":
with gr.Blocks() as interface:
gr.Markdown("# Numpy Neuron")
gr.Markdown(
"""
## What is this? <br>
The Backpropagation Playground is a GUI built around a neural network framework that I have built from scratch
in [numpy](https://numpy.org/). In this GUI, you can test different hyper parameters that will be fed to this framework and used
to train a neural network on the [MNIST](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) dataset of 8x8 pixel images.
## ⚠️ PLEASE READ ⚠️
This application is impossibly slow on the HuggingFace CPU instance that it is running on. It is advised to clone the
repository and run it locally.
In order to get a decent classification score on the validation set of the MNIST data (hard coded to 20%), you will have to
do somewhere between 15,000 epochs and 50,000 epochs with a learning rate around 0.001, and a hidden layer size
over 10. (roughly the example that I have provided). Running this many epochs with a hidden layer of that size
is pretty expensive on 2 cpu cores that this space has. So if you are actually curious, you might want to clone
this and run it locally because it will be much much faster.
`git clone https://huggingface.co/spaces/Jensen-holm/Numpy-Neuron`
After cloning, you will have to install the dependencies from requirements.txt into your environment. (venv reccommended)
`pip3 install -r requirements.txt`
Then, you can run the application on localhost with the following command.
`python3 app.py`
"""
)
with gr.Tab("Classification"):
with gr.Row():
data_plt = show_digits()
gr.Plot(data_plt)
with gr.Row():
seed_input = [gr.Number(minimum=0, label="Random Seed")]
# inputs in the same row
with gr.Row():
with gr.Column():
numeric_inputs = [
gr.Slider(
minimum=100, maximum=100_000, step=50, label="Epochs"
),
gr.Slider(
minimum=2, maximum=64, step=2, label="Hidden Network Size"
),
gr.Number(minimum=0.00001, maximum=1.5, label="Learning Rate"),
]
with gr.Column():
fn_inputs = [
gr.Dropdown(
choices=["Relu", "Sigmoid", "TanH"],
label="Hidden Layer Activation",
),
gr.Dropdown(choices=["SoftMax"], label="Output Activation"),
gr.Dropdown(
choices=["CrossEntropy", "CrossEntropyWithLogitsLoss"],
label="Loss Function",
),
]
inputs = seed_input + fn_inputs + numeric_inputs
with gr.Row():
train_btn = gr.Button("Train", variant="primary")
with gr.Row():
gr.Examples(
examples=[
[
2,
"Relu",
"SoftMax",
"CrossEntropyWithLogitsLoss",
15_000,
14,
0.001,
]
],
inputs=inputs,
)
# outputs in row below inputs
with gr.Row():
plt_outputs = [
gr.Plot(label="Loss History / Epoch"),
gr.Plot(label="Hits & Misses"),
]
with gr.Row():
label_output = [gr.Label(label="Class Confidences")]
train_btn.click(
fn=classification,
inputs=inputs,
outputs=plt_outputs + label_output,
)
with gr.Tab("Regression"):
gr.Markdown("### Coming Soon")
interface.launch(show_error=True)
|