File size: 2,996 Bytes
29cce3f
9e506b7
84bbd7d
29cce3f
 
 
 
9e506b7
 
84bbd7d
9e506b7
84bbd7d
 
9e506b7
 
880505a
38e3b7b
 
8c348c5
880505a
29cce3f
9e506b7
 
29cce3f
9e506b7
29cce3f
 
9e506b7
880505a
84bbd7d
 
 
9e506b7
880505a
 
84bbd7d
 
 
 
 
 
880505a
 
84bbd7d
 
880505a
 
9e506b7
880505a
84bbd7d
9e506b7
880505a
 
9e506b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
880505a
9e506b7
880505a
84bbd7d
 
 
 
 
 
 
 
880505a
 
 
 
 
 
 
 
9e506b7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss, accuracy_score, f1_score
from typing import Callable
from nn.nn import NN
import numpy as np


def init_weights_biases(nn: NN):
    # np.random.seed(0)
    bh = np.zeros((1, nn.hidden_size))
    bo = np.zeros((1, nn.output_size))
    wh = np.random.randn(nn.input_size, nn.hidden_size) * \
        np.sqrt(2 / nn.input_size)
    wo = np.random.randn(nn.hidden_size, nn.output_size) * \
        np.sqrt(2 / nn.hidden_size)
    return wh, wo, bh, bo


def train(nn: NN) -> dict:
    wh, wo, bh, bo = init_weights_biases(nn=nn)
    X_train, X_test, y_train, y_test = train_test_split(
        nn.X.to_numpy(),
        nn.y_dummy.to_numpy(),
        test_size=nn.test_size,
        # random_state=0,
    )

    ce: float = 0.0
    loss_hist: list[float] = []
    for _ in range(nn.epochs):
        # compute hidden output
        hidden_output = compute_node(
            data=X_train,
            weights=wh,
            biases=bh,
            func=nn.func,
        )

        # compute output layer
        y_hat = compute_node(
            data=hidden_output,
            weights=wo,
            biases=bo,
            func=nn.func,
        )
        # compute error & store it
        error = y_hat - y_train
        mse = mean_squared_error(y=y_train, y_hat=y_hat)
        loss_hist.append(mse)

        # compute derivatives of weights & biases
        # update weights & biases using gradient descent after
        # computing derivatives.
        dwo = nn.learning_rate * output_weight_prime(hidden_output, error)

        # Use NumPy to sum along the first axis (axis=0)
        # and then reshape to match the shape of bo
        dbo = nn.learning_rate * np.sum(output_bias_prime(error), axis=0)

        dhidden = np.dot(error, wo.T) * nn.func_prime(hidden_output)
        dwh = nn.learning_rate * hidden_weight_prime(X_train, dhidden)
        dbh = nn.learning_rate * hidden_bias_prime(dhidden)

        wh -= dwh
        wo -= dwo
        bh -= dbh
        bo -= dbo

    # compute final predictions on data not seen
    hidden_output_test = compute_node(
        data=X_test,
        weights=wh,
        biases=bh,
        func=nn.func,
    )
    y_hat = compute_node(
        data=hidden_output_test,
        weights=wo,
        biases=bo,
        func=nn.func,
    )

    return {
        "log loss": log_loss(y_true=y_test, y_pred=y_hat)
    }


def compute_node(data: np.array, weights: np.array, biases: np.array, func: Callable) -> np.array:
    return func(np.dot(data, weights) + biases)


def mean_squared_error(y: np.array, y_hat: np.array) -> np.array:
    return np.mean((y - y_hat) ** 2)


def hidden_bias_prime(error):
    return np.sum(error, axis=0)


def output_bias_prime(error):
    return np.sum(error, axis=0)


def hidden_weight_prime(data, error):
    return np.dot(data.T, error)


def output_weight_prime(hidden_output, error):
    return np.dot(hidden_output.T, error)