Spaces:
Sleeping
Sleeping
File size: 2,206 Bytes
29cce3f 84bbd7d 29cce3f 38e3b7b 84bbd7d 38e3b7b 84bbd7d 880505a 38e3b7b 8c348c5 880505a 29cce3f 880505a 84bbd7d 880505a 84bbd7d 880505a 84bbd7d 880505a 84bbd7d 880505a 84bbd7d 880505a 84bbd7d 880505a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from sklearn.model_selection import train_test_split
from typing import Callable
from nn.nn import NN
import numpy as np
def init_weights_biases(nn: NN) -> None:
bh = np.zeros((1, nn.hidden_size))
bo = np.zeros((1, 1))
wh = np.random.randn(nn.input_size, nn.hidden_size) * \
np.sqrt(2 / nn.input_size)
wo = np.random.randn(nn.hidden_size, 1) * np.sqrt(2 / nn.hidden_size)
return wh, wo, bh, bo
def train(nn: NN) -> dict:
wh, wo, bh, bo = init_weights_biases(nn=nn)
X_train, X_test, y_train, y_test = train_test_split(
nn.X,
nn.y,
test_size=nn.test_size,
)
mse: float = 0.0
loss_hist: list[float] = []
for _ in range(nn.epochs):
# compute hidden output
hidden_output = compute_node(
data=X_train.to_numpy(),
weights=wh,
biases=bh,
func=nn.func,
)
# compute output layer
y_hat = compute_node(
data=hidden_output,
weights=wo,
biases=bo,
func=nn.func,
)
# compute error & store it
error = y_hat - y_train
mse = mean_squared_error(y_train, y_hat)
loss_hist.append(mse)
# update weights & biases using gradient descent after
# computing derivatives.
wh -= (nn.learning_rate * hidden_weight_prime(X_train, error))
wo -= (nn.learning_rate * output_weight_prime(hidden_output, error))
bh -= (nn.learning_rate * hidden_bias_prime(error))
bo -= (nn.learning_rate * output_bias_prime(error))
return {
"mse": mse,
"loss_hist": loss_hist,
}
def compute_node(data: np.array, weights: np.array, biases: np.array, func: Callable) -> np.array:
return func(np.dot(data, weights) + biases)
def mean_squared_error(y: np.array, y_hat: np.array) -> np.array:
return np.mean((y - y_hat) ** 2)
def hidden_weight_prime(data, error):
return np.dot(data.T, error)
def output_weight_prime(hidden_output, error):
return np.dot(hidden_output.T, error)
def hidden_bias_prime(error):
return np.sum(error, axis=0)
def output_bias_prime(error):
return np.sum(error, axis=0)
|