Spaces:
Sleeping
Sleeping
File size: 1,332 Bytes
b378fde 28d5b3d b378fde 28d5b3d b378fde 28d5b3d 0e83192 b378fde 28d5b3d b378fde 28d5b3d b378fde 28d5b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from plt_id import generate_image_key
import os
matplotlib.use("Agg")
sns.set()
# Replace with the desired upload folder path
UPLOAD_FOLDER = '/path/to/upload/folder'
def plot(clusterer, X) -> None:
cluster_data = clusterer.to_dict(X)["clusters"]
# plot the clusters and data points
fig, ax = plt.subplots(figsize=(8, 6))
for cluster in cluster_data:
sns.scatterplot(
x=[point[0] for point in cluster["points"]],
y=[point[1] for point in cluster["points"]],
label=f"Cluster {cluster['cluster_id']}",
ax=ax,
)
ax.scatter(
x=cluster["centroid"][0],
y=cluster["centroid"][1],
marker="x",
s=100,
linewidth=2,
color="red",
)
ax.legend()
ax.set_title("K-means Clustering")
ax.set_ylabel("Normalized Petal Length (cm)")
ax.set_xlabel("Normalized Petal Length (cm)")
image_key = generate_image_key() # Generate a unique key for the image
# Save the plot as an image file with the key in the filename
plot_filename = os.path.join(UPLOAD_FOLDER, f"{image_key}.png")
fig.savefig(plot_filename, format="png")
plt.close(fig)
clusterer.plot_key = image_key
|