Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +23 -48
tasks/text.py
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
|
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
-
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
6 |
-
from transformers import Trainer, TrainingArguments
|
7 |
-
import torch
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
router = APIRouter()
|
13 |
|
14 |
-
DESCRIPTION = "
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
@router.post(ROUTE, tags=["Text Task"],
|
@@ -20,8 +19,9 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
20 |
"""
|
21 |
Evaluate text classification for climate disinformation detection.
|
22 |
|
23 |
-
Current Model:
|
24 |
-
-
|
|
|
25 |
"""
|
26 |
# Get space info
|
27 |
username, space_url = get_space_info()
|
@@ -49,58 +49,33 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
49 |
train_dataset = train_test["train"]
|
50 |
test_dataset = train_test["test"]
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
# Training arguments
|
67 |
-
training_args = TrainingArguments(
|
68 |
-
output_dir="./results",
|
69 |
-
evaluation_strategy="epoch",
|
70 |
-
learning_rate=5e-5,
|
71 |
-
per_device_train_batch_size=16,
|
72 |
-
per_device_eval_batch_size=16,
|
73 |
-
num_train_epochs=3,
|
74 |
-
weight_decay=0.01,
|
75 |
-
logging_dir="./logs",
|
76 |
-
logging_steps=10,
|
77 |
-
)
|
78 |
-
|
79 |
-
trainer = Trainer(
|
80 |
-
model=model,
|
81 |
-
args=training_args,
|
82 |
-
train_dataset=train_dataset,
|
83 |
-
eval_dataset=test_dataset,
|
84 |
-
tokenizer=tokenizer,
|
85 |
-
)
|
86 |
|
87 |
# Start tracking emissions
|
88 |
tracker.start()
|
89 |
tracker.start_task("inference")
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
# Perform inference
|
95 |
-
predictions = trainer.predict(test_dataset).predictions
|
96 |
-
predictions = torch.argmax(torch.tensor(predictions), axis=1).tolist()
|
97 |
-
true_labels = test_dataset["label"]
|
98 |
|
99 |
# Stop tracking emissions
|
100 |
emissions_data = tracker.stop_task()
|
101 |
|
102 |
# Calculate accuracy
|
103 |
-
accuracy = accuracy_score(
|
104 |
|
105 |
# Prepare results dictionary
|
106 |
results = {
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from sklearn.naive_bayes import MultinomialNB
|
6 |
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
|
7 |
|
8 |
from .utils.evaluation import TextEvaluationRequest
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
|
11 |
router = APIRouter()
|
12 |
|
13 |
+
DESCRIPTION = "Naive Bayes Text Classifier"
|
14 |
ROUTE = "/text"
|
15 |
|
16 |
@router.post(ROUTE, tags=["Text Task"],
|
|
|
19 |
"""
|
20 |
Evaluate text classification for climate disinformation detection.
|
21 |
|
22 |
+
Current Model: Naive Bayes Classifier
|
23 |
+
- Uses TF-IDF for text vectorization
|
24 |
+
- Trains and evaluates a Multinomial Naive Bayes model
|
25 |
"""
|
26 |
# Get space info
|
27 |
username, space_url = get_space_info()
|
|
|
49 |
train_dataset = train_test["train"]
|
50 |
test_dataset = train_test["test"]
|
51 |
|
52 |
+
# Extract text and labels
|
53 |
+
train_texts = [x["text"] for x in train_dataset]
|
54 |
+
train_labels = [x["label"] for x in train_dataset]
|
55 |
+
test_texts = [x["text"] for x in test_dataset]
|
56 |
+
test_labels = [x["label"] for x in test_dataset]
|
57 |
+
|
58 |
+
# TF-IDF Vectorization
|
59 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
60 |
+
train_vectors = vectorizer.fit_transform(train_texts)
|
61 |
+
test_vectors = vectorizer.transform(test_texts)
|
62 |
+
|
63 |
+
# Train Naive Bayes Classifier
|
64 |
+
model = MultinomialNB()
|
65 |
+
model.fit(train_vectors, train_labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Start tracking emissions
|
68 |
tracker.start()
|
69 |
tracker.start_task("inference")
|
70 |
|
71 |
+
# Inference
|
72 |
+
predictions = model.predict(test_vectors)
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# Stop tracking emissions
|
75 |
emissions_data = tracker.stop_task()
|
76 |
|
77 |
# Calculate accuracy
|
78 |
+
accuracy = accuracy_score(test_labels, predictions)
|
79 |
|
80 |
# Prepare results dictionary
|
81 |
results = {
|