Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.model_selection import GridSearchCV | |
from sklearn.metrics import accuracy_score | |
from sklearn.pipeline import Pipeline | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
router = APIRouter() | |
DESCRIPTION = "TF-IDF + Logistic Regression" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection using TF-IDF and Logistic Regression. | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset into training and testing sets | |
train_data = dataset["train"] | |
test_data = dataset["test"] | |
train_texts, train_labels = train_data["text"], train_data["label"] | |
test_texts, test_labels = test_data["text"], test_data["label"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
# Define the pipeline with TF-IDF and Logistic Regression | |
pipeline = Pipeline([ | |
('tfidf', TfidfVectorizer(max_features=10000, ngram_range=(1, 2), stop_words="english")), | |
('clf', LogisticRegression(max_iter=1000, random_state=42)) | |
]) | |
# Set up GridSearchCV for hyperparameter tuning | |
param_grid = { | |
'tfidf__max_features': [5000, 10000, 15000], | |
'tfidf__ngram_range': [(1, 1), (1, 2)], | |
'clf__C': [0.1, 1, 10] # Regularization strength | |
} | |
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring='accuracy', verbose=2) | |
grid_search.fit(train_texts, train_labels) | |
# Get best estimator from GridSearch | |
best_model = grid_search.best_estimator_ | |
# Model Inference | |
predictions = best_model.predict(test_texts) | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(test_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": len(test_data), | |
}, | |
"best_params": grid_search.best_params_ | |
} | |
return results | |