JenetGhumman's picture
Update tasks/text.py
8b796b7 verified
raw
history blame
2.89 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import numpy as np
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "TF-IDF + SVM Classifier"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection using TF-IDF and SVM.
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset into training and testing sets
train_data = dataset["train"]
test_data = dataset["test"]
# Extract text and labels
train_texts, train_labels = train_data["text"], train_data["label"]
test_texts, test_labels = test_data["text"], test_data["label"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# TF-IDF Vectorization
vectorizer = TfidfVectorizer(max_features=10000, ngram_range=(1, 2), stop_words="english")
X_train = vectorizer.fit_transform(train_texts)
X_test = vectorizer.transform(test_texts)
# Train SVM Classifier
svm_model = SVC(kernel="linear", probability=True)
svm_model.fit(X_train, train_labels)
# Model Inference
predictions = svm_model.predict(X_test)
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(test_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": len(test_data),
}
}
return results