JenetGhumman's picture
Update tasks/text.py
e2f75a8 verified
raw
history blame
3.14 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "SVM Text Classifier with TF-IDF"
ROUTE = "/text_svm"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text_svm(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: SVM Classifier
- Uses TF-IDF for text vectorization
- Trains and evaluates a Support Vector Machine (SVM) model
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
train_dataset = train_test["train"]
test_dataset = train_test["test"]
# Extract text and labels
train_texts = [x["text"] for x in train_dataset]
train_labels = [x["label"] for x in train_dataset]
test_texts = [x["text"] for x in test_dataset]
test_labels = [x["label"] for x in test_dataset]
# TF-IDF Vectorization
vectorizer = TfidfVectorizer(max_features=5000)
train_vectors = vectorizer.fit_transform(train_texts)
test_vectors = vectorizer.transform(test_texts)
# Train SVM Classifier
model = SVC(kernel="linear", probability=True)
model.fit(train_vectors, train_labels)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# Inference
predictions = model.predict(test_vectors)
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(test_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results