--- title: RAG Interview Agent emoji: 🤖 colorFrom: blue colorTo: purple sdk: streamlit app_file: app.py pinned: true --- # RAG-Powered AI Interview Agent An intelligent interview assistant that evaluates candidates using pure Retrieval-Augmented Generation (RAG) architecture. ![Demo](https://i.imgur.com/JQ9w5bG.gif) ## 🚀 Features - **CV Screening**: Automatic qualification check using semantic similarity - **Smart Interviews**: Context-aware questions generated from job requirements - **Fair Evaluation**: Answers scored against knowledge base - **Detailed Reports**: PDF transcripts with scores and feedback ## 🛠️ Tech Stack | Component | Technology Used | |--------------------|----------------| | LLM | Meta Llama-3-8B | | Vector Store | FAISS | | Embeddings | Sentence-Transformers | | UI Framework | Streamlit | | CV Parsing | PyPDF2, python-docx | ## 📦 Installation ```bash # Clone the repository git clone https://huggingface.co/spaces/Jekyll2000/interview_agent cd your-space-name # Install dependencies pip install -r requirements.txt # Set Hugging Face token export HUGGINGFACEHUB_API_TOKEN='your-api-token' # Launch the app streamlit run app.py interview-agent/ ├── app.py # Main application ├── utils/ │ ├── cv_processor.py # CV parsing and evaluation │ ├── rag_agent.py # Core RAG implementation │ ├── evaluator.py # Scoring logic │ └── report_generator.py# PDF report creation ├── data/ # Job requirements and interviews └── requirements.txt # Python dependencies