Spaces:
Running
Running
Create utils/interview_agent.py
Browse files- utils/interview_agent.py +150 -0
utils/interview_agent.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms import HuggingFaceHub
|
2 |
+
from langchain.chains import RetrievalQA
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.document_loaders import TextLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
import os
|
8 |
+
|
9 |
+
class InterviewAgent:
|
10 |
+
def __init__(self, job_role, cv_summary):
|
11 |
+
self.job_role = job_role
|
12 |
+
self.cv_summary = cv_summary
|
13 |
+
self.llm = HuggingFaceHub(
|
14 |
+
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
|
15 |
+
model_kwargs={"temperature": 0.5, "max_length": 2048}
|
16 |
+
)
|
17 |
+
self.questions = self._generate_questions()
|
18 |
+
|
19 |
+
def _generate_questions(self):
|
20 |
+
# Load job-specific questions
|
21 |
+
base_questions = self._load_base_questions()
|
22 |
+
|
23 |
+
# Generate CV-specific questions
|
24 |
+
cv_questions = self._generate_cv_questions()
|
25 |
+
|
26 |
+
return base_questions + cv_questions
|
27 |
+
|
28 |
+
def _load_base_questions(self):
|
29 |
+
# In a real app, these would be more sophisticated and loaded from a database
|
30 |
+
role_questions = {
|
31 |
+
"Software Engineer": [
|
32 |
+
{"text": "Explain the SOLID principles in object-oriented design.", "type": "technical", "weight": 0.3},
|
33 |
+
{"text": "How would you optimize a slow database query?", "type": "technical", "weight": 0.25},
|
34 |
+
{"text": "Describe your experience with Agile methodologies.", "type": "behavioral", "weight": 0.2},
|
35 |
+
{"text": "How do you handle conflicts in a team setting?", "type": "behavioral", "weight": 0.15},
|
36 |
+
{"text": "Where do you see yourself in 5 years?", "type": "general", "weight": 0.1}
|
37 |
+
],
|
38 |
+
"Data Scientist": [
|
39 |
+
{"text": "Explain the bias-variance tradeoff.", "type": "technical", "weight": 0.3},
|
40 |
+
{"text": "How would you handle missing data in a dataset?", "type": "technical", "weight": 0.25},
|
41 |
+
{"text": "Describe a time when you had to explain complex technical concepts to non-technical stakeholders.", "type": "behavioral", "weight": 0.2},
|
42 |
+
{"text": "How do you stay updated with the latest developments in data science?", "type": "behavioral", "weight": 0.15},
|
43 |
+
{"text": "What motivates you to work in data science?", "type": "general", "weight": 0.1}
|
44 |
+
]
|
45 |
+
}
|
46 |
+
|
47 |
+
return role_questions.get(self.job_role, role_questions["Software Engineer"])
|
48 |
+
|
49 |
+
def _generate_cv_questions(self):
|
50 |
+
# Generate questions based on CV content
|
51 |
+
prompt = f"""
|
52 |
+
Based on the following CV summary for a {self.job_role} position, generate 3 specific interview questions.
|
53 |
+
Focus on areas that need clarification or seem particularly relevant to the role.
|
54 |
+
|
55 |
+
CV Summary:
|
56 |
+
{self.cv_summary['text']}
|
57 |
+
|
58 |
+
Generate exactly 3 questions in this format:
|
59 |
+
1. [question text]|technical
|
60 |
+
2. [question text]|behavioral
|
61 |
+
3. [question text]|technical
|
62 |
+
|
63 |
+
Make the questions specific to the candidate's experience and the job role.
|
64 |
+
"""
|
65 |
+
|
66 |
+
response = self.llm(prompt)
|
67 |
+
questions = []
|
68 |
+
|
69 |
+
for line in response.split('\n'):
|
70 |
+
if line.strip() and '|' in line:
|
71 |
+
text = line.split('|')[0].strip()
|
72 |
+
q_type = line.split('|')[1].strip().lower()
|
73 |
+
questions.append({
|
74 |
+
"text": text,
|
75 |
+
"type": q_type,
|
76 |
+
"weight": 0.15 if q_type == "technical" else 0.1,
|
77 |
+
"cv_based": True
|
78 |
+
})
|
79 |
+
|
80 |
+
return questions[:3] # Ensure we only take 3 questions
|
81 |
+
|
82 |
+
def get_questions(self):
|
83 |
+
return self.questions
|
84 |
+
|
85 |
+
def evaluate_answer(self, question, answer):
|
86 |
+
prompt = f"""
|
87 |
+
Evaluate the following interview answer for a {self.job_role} position.
|
88 |
+
Provide specific feedback and a score from 1-10 based on:
|
89 |
+
- Technical accuracy (if technical question)
|
90 |
+
- Relevance to the question
|
91 |
+
- Clarity of communication
|
92 |
+
- Demonstration of skills/experience
|
93 |
+
|
94 |
+
Question: {question['text']}
|
95 |
+
Answer: {answer}
|
96 |
+
|
97 |
+
Respond in this exact format:
|
98 |
+
Score: [x]/10
|
99 |
+
Feedback: [your feedback here]
|
100 |
+
"""
|
101 |
+
|
102 |
+
response = self.llm(prompt)
|
103 |
+
|
104 |
+
# Parse the response
|
105 |
+
score = 5 # default if parsing fails
|
106 |
+
feedback = "Evaluation not available"
|
107 |
+
|
108 |
+
if "Score:" in response and "Feedback:" in response:
|
109 |
+
try:
|
110 |
+
score_part = response.split("Score:")[1].split("/10")[0].strip()
|
111 |
+
score = float(score_part)
|
112 |
+
feedback = response.split("Feedback:")[1].strip()
|
113 |
+
except:
|
114 |
+
pass
|
115 |
+
|
116 |
+
return {
|
117 |
+
"score": score,
|
118 |
+
"feedback": feedback,
|
119 |
+
"max_score": 10
|
120 |
+
}
|
121 |
+
|
122 |
+
def final_evaluation(self, answers):
|
123 |
+
total_score = 0
|
124 |
+
max_possible = 0
|
125 |
+
|
126 |
+
# Calculate weighted score
|
127 |
+
for answer in answers:
|
128 |
+
weight = answer['question'].get('weight', 0.1)
|
129 |
+
total_score += answer['evaluation']['score'] * weight
|
130 |
+
max_possible += 10 * weight
|
131 |
+
|
132 |
+
overall_score = (total_score / max_possible) * 10
|
133 |
+
|
134 |
+
# Determine band
|
135 |
+
if overall_score >= 9:
|
136 |
+
band = "Expert (Band 5)"
|
137 |
+
elif overall_score >= 7:
|
138 |
+
band = "Proficient (Band 4)"
|
139 |
+
elif overall_score >= 5:
|
140 |
+
band = "Competent (Band 3)"
|
141 |
+
elif overall_score >= 3:
|
142 |
+
band = "Limited (Band 2)"
|
143 |
+
else:
|
144 |
+
band = "Beginner (Band 1)"
|
145 |
+
|
146 |
+
return {
|
147 |
+
"score": round(overall_score, 1),
|
148 |
+
"band": band,
|
149 |
+
"total_questions": len(answers)
|
150 |
+
}
|