import torch from transformers import T5Tokenizer, T5ForConditionalGeneration import gradio as gr # Inicialize o tokenizer e o modelo tokenizer = T5Tokenizer.from_pretrained('t5-small') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql') model = model.to(device) model.eval() # Função para gerar SQL def generate_sql(input_prompt): # Tokenize a entrada inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device) # Gere a saída with torch.no_grad(): outputs = model.generate(**inputs, max_length=512) # Decodifique a saída para texto (SQL) generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_sql # Interface Gradio def gerar_sql_interface(input_prompt): # Adiciona o prefixo "tables:" e "query for:" automaticamente full_prompt = f"tables:\n{input_prompt}\nquery for: {input_prompt}" sql_query = generate_sql(full_prompt) return sql_query # Cria a interface interface = gr.Interface( fn=gerar_sql_interface, inputs="text", outputs="text", title="Gerador de SQL", description="Digite uma consulta em linguagem natural e gere a consulta SQL correspondente." ) # Inicia a interface interface.launch()