File size: 27,157 Bytes
da35c69 44529bb da35c69 793be05 da35c69 44529bb da35c69 44529bb da35c69 44529bb 0450c4e 44529bb da35c69 44529bb da35c69 44529bb 0450c4e 44529bb 0450c4e 44529bb 0450c4e 44529bb da35c69 44529bb acfee14 44529bb 0450c4e 44529bb 0450c4e 44529bb 0450c4e 44529bb da35c69 44529bb 793be05 a06316f 793be05 27ff91e 1223129 27ff91e 793be05 44529bb 793be05 a06316f 793be05 27ff91e 793be05 44529bb 0450c4e 44529bb da35c69 44529bb 0450c4e da35c69 793be05 a06316f 793be05 27ff91e 793be05 44529bb 18bf871 44529bb acfee14 44529bb da35c69 0450c4e da35c69 44529bb da35c69 44529bb da35c69 44529bb da35c69 44529bb 0450c4e 44529bb 0450c4e da35c69 793be05 a06316f 793be05 27ff91e 793be05 44529bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
from dataclasses import dataclass
from typing import Any, Final
from llmdataparser.base_parser import (
DatasetDescription,
EvaluationMetric,
HuggingFaceDatasetParser,
HuggingFaceParseEntry,
)
MMLU_VALID_ANSWERS: Final[set[str]] = {"A", "B", "C", "D"}
MMLU_PRO_VALID_ANSWERS: Final[set[str]] = {
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
}
MMLU_VALID_ANSWER_STR: Final[str] = ", ".join(sorted(MMLU_VALID_ANSWERS))
MMLU_PRO_VALID_ANSWER_STR: Final[str] = ", ".join(sorted(MMLU_PRO_VALID_ANSWERS))
@dataclass(frozen=True, kw_only=True, slots=True)
class MMLUParseEntry(HuggingFaceParseEntry):
"""Custom entry class for MMLU, with fields specific to this dataset parser."""
raw_choices: list[str]
task_name: str
@classmethod
def create(
cls,
question: str,
answer: str,
raw_question: str,
raw_choices: list[str],
raw_answer: str,
task_name: str,
) -> "MMLUParseEntry":
if answer not in MMLU_VALID_ANSWERS:
raise ValueError(
f"Invalid answer_letter '{answer}'; must be one of {MMLU_VALID_ANSWER_STR}"
)
if not task_name:
raise ValueError("Task name cannot be empty")
return cls(
question=question,
answer=answer,
raw_question=raw_question,
raw_answer=raw_answer,
raw_choices=raw_choices,
task_name=task_name,
)
@dataclass(frozen=True, kw_only=True, slots=True)
class MMLUProParseEntry(HuggingFaceParseEntry):
"""Custom entry class for MMLU, with fields specific to this dataset parser."""
raw_choices: list[str]
task_name: str
@classmethod
def create(
cls,
question: str,
answer: str,
raw_question: str,
raw_choices: list[str],
raw_answer: str,
task_name: str,
) -> "MMLUProParseEntry":
if answer not in MMLU_PRO_VALID_ANSWERS:
raise ValueError(
f"Invalid answer_letter '{answer}'; must be one of {MMLU_PRO_VALID_ANSWER_STR}"
)
if not task_name:
raise ValueError("Task name cannot be empty")
return cls(
question=question,
answer=answer,
raw_question=raw_question,
raw_choices=raw_choices,
raw_answer=raw_answer,
task_name=task_name,
)
class MMLUDatasetParser(HuggingFaceDatasetParser[MMLUParseEntry]):
"""Base class for MMLU dataset parsers with common functionality."""
def _get_task_from_entry(self, data_entry: dict[str, Any]) -> str:
"""Get the task name from the data entry or default task name."""
task_name: str = data_entry.get("subject", "")
return task_name if task_name else (self._current_task or self._default_task)
def process_entry(
self, row: dict[str, Any], task_name: str | None = None, **kwargs: Any
) -> MMLUParseEntry:
"""
Generate a question and expected answer from the given row.
Args:
row: A data point to be formatted.
task_name: Optional task name for the entry.
**kwargs: Additional keyword arguments.
Returns:
MMLUParseEntry: The formatted entry object.
"""
task = task_name or self._get_current_task(row)
# Ensure task is not None
final_task = task or self._default_task
choices = "\n".join(
f"{chr(65 + i)}. {choice}" for i, choice in enumerate(row["choices"])
)
raw_question = row["question"]
raw_choices = row["choices"]
raw_answer = str(row["answer"]) # Ensure raw_answer is a string
question = f"Question: {raw_question}\n{choices}\nAnswer:"
answer_letter = chr(65 + int(raw_answer)) # Convert index to 'A', 'B', 'C', 'D'
return MMLUParseEntry.create(
question=question,
answer=answer_letter,
raw_question=raw_question,
raw_choices=raw_choices,
raw_answer=raw_answer,
task_name=final_task,
)
class BaseMMLUDatasetParser(MMLUDatasetParser):
"""Parser for the original MMLU dataset."""
_data_source = "cais/mmlu"
_default_task = "all"
_task_names = [
"abstract_algebra",
"anatomy",
"astronomy",
"business_ethics",
"clinical_knowledge",
"college_biology",
"college_chemistry",
"college_computer_science",
"college_mathematics",
"college_medicine",
"college_physics",
"computer_security",
"conceptual_physics",
"econometrics",
"electrical_engineering",
"elementary_mathematics",
"formal_logic",
"global_facts",
"high_school_biology",
"high_school_chemistry",
"high_school_computer_science",
"high_school_european_history",
"high_school_geography",
"high_school_government_and_politics",
"high_school_macroeconomics",
"high_school_mathematics",
"high_school_microeconomics",
"high_school_physics",
"high_school_psychology",
"high_school_statistics",
"high_school_us_history",
"high_school_world_history",
"human_aging",
"human_sexuality",
"international_law",
"jurisprudence",
"logical_fallacies",
"machine_learning",
"management",
"marketing",
"medical_genetics",
"miscellaneous",
"moral_disputes",
"moral_scenarios",
"nutrition",
"philosophy",
"prehistory",
"professional_accounting",
"professional_law",
"professional_medicine",
"professional_psychology",
"public_relations",
"security_studies",
"sociology",
"us_foreign_policy",
"virology",
"world_religions",
]
def get_dataset_description(self) -> DatasetDescription:
"""Returns a description of the MMLU dataset."""
return DatasetDescription.create(
name="Massive Multitask Language Understanding (MMLU)",
purpose="Evaluate models' extensive world knowledge and problem-solving abilities across diverse branches of knowledge",
source="https://huggingface.co/datasets/cais/mmlu",
language="English",
category=["General Knowledge and Reasoning"],
format="Multiple choice questions with four options (A, B, C, D)",
characteristics=(
"Comprehensive evaluation benchmark spanning humanities, social sciences, hard sciences, "
"and other essential areas of knowledge. The test includes 57 subjects such as "
"elementary mathematics, US history, computer science, and law. Success on this test "
"requires both extensive world knowledge and strong problem-solving capabilities."
),
citation="""@article{hendryckstest2021,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}
@article{hendrycks2021ethics,
title={Aligning AI With Shared Human Values},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andrew Critch and Jerry Li and Dawn Song and Jacob Steinhardt},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}""",
additional_info={
"subjects": "57 tasks/subjects",
"categories": [
"Humanities",
"Social Sciences",
"Hard Sciences",
"Other",
],
"example_subjects": [
"Elementary Mathematics",
"US History",
"Computer Science",
"Law",
],
"requirements": [
"Extensive world knowledge",
"Problem solving ability",
],
},
)
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
"""Returns the recommended evaluation metrics for MMLU dataset."""
return [
EvaluationMetric.create(
name="accuracy",
type="classification",
description="Proportion of correctly answered multiple-choice questions (exact match with A, B, C, D)",
implementation="evaluate.load('accuracy')",
primary=True,
),
EvaluationMetric.create(
name="subject_accuracy",
type="classification",
description="Per-subject accuracy scores across all 57 tasks",
implementation="custom_subject_accuracy",
primary=True,
),
EvaluationMetric.create(
name="category_accuracy",
type="classification",
description="Accuracy grouped by major categories (Humanities, Social Sciences, Hard Sciences, Other)",
implementation="custom_category_accuracy",
primary=True,
),
EvaluationMetric.create(
name="task_correlation",
type="analysis",
description="Analysis of performance correlations between different subjects/tasks",
implementation="custom_task_correlation",
primary=False,
),
]
class MMLUReduxDatasetParser(MMLUDatasetParser):
"""Parser for the MMLU Redux dataset."""
_data_source = "edinburgh-dawg/mmlu-redux"
_default_task = "anatomy"
_task_names = [
"anatomy",
"astronomy",
"business_ethics",
"clinical_knowledge",
"college_chemistry",
"college_computer_science",
"college_mathematics",
"college_medicine",
"college_physics",
"conceptual_physics",
"econometrics",
"electrical_engineering",
"formal_logic",
"global_facts",
"high_school_chemistry",
"high_school_geography",
"high_school_macroeconomics",
"high_school_mathematics",
"high_school_physics",
"high_school_statistics",
"high_school_us_history",
"human_aging",
"logical_fallacies",
"machine_learning",
"miscellaneous",
"philosophy",
"professional_accounting",
"professional_law",
"public_relations",
"virology",
]
def get_dataset_description(self) -> DatasetDescription:
"""Returns description of the MMLU Redux dataset."""
return DatasetDescription.create(
name="MMLU Redux",
purpose="Provide a manually re-annotated subset of MMLU with error analysis and corrections",
source="https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux",
language="English",
format="Multiple choice questions with four options (A, B, C, D)",
category=["General Knowledge and Reasoning"],
characteristics=(
"A carefully curated subset of 3,000 questions across 30 MMLU subjects, "
"manually re-annotated to identify and classify various types of errors. "
"The dataset maintains the original questions but provides additional "
"error annotations and corrections based on expert review and verification "
"against credible sources."
),
citation="""@misc{gema2024mmlu,
title={Are We Done with MMLU?},
author={Aryo Pradipta Gema and Joshua Ong Jun Leang and Giwon Hong and Alessio Devoto and Alberto Carlo Maria Mancino and Rohit Saxena and Xuanli He and Yu Zhao and Xiaotang Du and Mohammad Reza Ghasemi Madani and Claire Barale and Robert McHardy and Joshua Harris and Jean Kaddour and Emile van Krieken and Pasquale Minervini},
year={2024},
eprint={2406.04127},
archivePrefix={arXiv},
primaryClass={cs.CL}
}""",
additional_info={
"size": "3,000 questions (100 per subject)",
"subjects": "30 MMLU subjects",
"license": "CC-BY-4.0",
"error_types": {
"Question Assessment": [
"Bad Question Clarity",
"Bad Options Clarity",
],
"Ground Truth Verification": [
"No Correct Answer",
"Multiple Correct Answers",
"Wrong Ground Truth",
],
},
"verification_process": "Expert review with source verification",
"base_dataset": "cais/mmlu",
},
)
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
"""Returns the recommended evaluation metrics for MMLU Redux dataset."""
return [
EvaluationMetric.create(
name="accuracy",
type="classification",
description="Proportion of correctly answered multiple-choice questions (exact match with A, B, C, D)",
implementation="evaluate.load('accuracy')",
primary=True,
),
EvaluationMetric.create(
name="subject_accuracy",
type="classification",
description="Per-subject accuracy scores across 30 subjects (100 questions each)",
implementation="custom_subject_accuracy",
primary=True,
),
EvaluationMetric.create(
name="question_clarity",
type="analysis",
description="Analysis of performance on questions with different clarity issues",
implementation="custom_clarity_analysis",
primary=False,
),
]
class TMMLUPlusDatasetParser(MMLUDatasetParser):
"""Parser for the TMMLU+ dataset."""
_data_source = "ikala/tmmluplus"
_default_task = "taiwanese_hokkien"
_task_names = [
"engineering_math",
"dentistry",
"traditional_chinese_medicine_clinical_medicine",
"clinical_psychology",
"technical",
"culinary_skills",
"mechanical",
"logic_reasoning",
"real_estate",
"general_principles_of_law",
"finance_banking",
"anti_money_laundering",
"ttqav2",
"marketing_management",
"business_management",
"organic_chemistry",
"advance_chemistry",
"physics",
"secondary_physics",
"human_behavior",
"national_protection",
"jce_humanities",
"politic_science",
"agriculture",
"official_document_management",
"financial_analysis",
"pharmacy",
"educational_psychology",
"statistics_and_machine_learning",
"management_accounting",
"introduction_to_law",
"computer_science",
"veterinary_pathology",
"accounting",
"fire_science",
"optometry",
"insurance_studies",
"pharmacology",
"taxation",
"trust_practice",
"geography_of_taiwan",
"physical_education",
"auditing",
"administrative_law",
"education_(profession_level)",
"economics",
"veterinary_pharmacology",
"nautical_science",
"occupational_therapy_for_psychological_disorders",
"basic_medical_science",
"macroeconomics",
"trade",
"chinese_language_and_literature",
"tve_design",
"junior_science_exam",
"junior_math_exam",
"junior_chinese_exam",
"junior_social_studies",
"tve_mathematics",
"tve_chinese_language",
"tve_natural_sciences",
"junior_chemistry",
"music",
"education",
"three_principles_of_people",
"taiwanese_hokkien",
]
def process_entry(
self, row: dict[str, Any], task_name: str | None = None, **kwargs: Any
) -> MMLUParseEntry:
"""Process a single TMMLU+ entry."""
# Extract choices in order
raw_choices = [row["A"], row["B"], row["C"], row["D"]]
choices = "\n".join(
f"{chr(65 + i)}. {choice}" for i, choice in enumerate(raw_choices)
)
raw_question = row["question"]
raw_answer = row["answer"]
question = f"Question: {raw_question}\n{choices}\nAnswer:"
task = task_name or self._get_current_task(row)
return MMLUParseEntry.create(
question, raw_answer, raw_question, raw_choices, raw_answer, task
)
def get_dataset_description(self) -> DatasetDescription:
"""Returns description of the TMMLU+ dataset."""
return DatasetDescription.create(
name="Traditional Chinese Massive Multitask Language Understanding Plus (TMMLU+)",
purpose="Evaluate language models' understanding and reasoning capabilities in Traditional Chinese across diverse subjects",
source="https://huggingface.co/datasets/ikala/tmmluplus",
language="Traditional Chinese",
category=["General Knowledge and Reasoning", "Taiwan"],
format="Multiple choice questions with four options (A, B, C, D)",
characteristics=(
"A comprehensive evaluation benchmark featuring 66 subjects from elementary "
"to professional level. The dataset is six times larger than the original TMMLU "
"and provides more balanced subject coverage. Includes benchmark results from "
"both closed-source models and 20 open-weight Chinese language models with "
"parameters ranging from 1.8B to 72B."
),
citation="""@article{ikala2024improved,
title={An Improved Traditional Chinese Evaluation Suite for Foundation Model},
author={Tam, Zhi-Rui and Pai, Ya-Ting and Lee, Yen-Wei and Cheng, Sega and Shuai, Hong-Han},
journal={arXiv preprint arXiv:2403.01858},
year={2024}
}""",
additional_info={
"subjects": "66 diverse subjects",
"difficulty_levels": ["Elementary", "Secondary", "Professional"],
"model_benchmarks": {
"model_types": ["Closed-source models", "Open-weight Chinese LLMs"],
"parameter_range": "1.8B - 72B",
},
"comparison": "6x larger than original TMMLU",
"script": "Traditional Chinese",
},
)
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
"""Returns the recommended evaluation metrics for TMMLU+ dataset."""
return [
EvaluationMetric.create(
name="accuracy",
type="classification",
description="Overall percentage of correctly answered multiple-choice questions",
implementation="evaluate.load('accuracy')",
primary=True,
),
EvaluationMetric.create(
name="subject_accuracy",
type="classification",
description="Per-subject accuracy scores across all 66 subjects",
implementation="custom_subject_accuracy",
primary=True,
),
EvaluationMetric.create(
name="difficulty_analysis",
type="classification",
description="Performance analysis across different difficulty levels (elementary to professional)",
implementation="custom_difficulty_analysis",
primary=False,
),
]
class MMLUProDatasetParser(HuggingFaceDatasetParser[MMLUProParseEntry]):
"""Parser for the MMLU Pro dataset."""
_data_source = "TIGER-Lab/MMLU-Pro"
_default_task = "default"
_task_names = ["default"]
_hidden_task_names = [
"math",
"physics",
"chemistry",
"law",
"engineering",
"other",
"economics",
"health",
"psychology",
"business",
"biology",
"philosophy",
"computer_science",
"history",
]
def _get_task_from_entry(self, data_entry: dict[str, Any]) -> str:
"""Get the task name from the data entry or default task name."""
if data_entry is not None:
task_name: str = data_entry.get("category", "")
if task_name:
return task_name
return self._current_task or self._default_task
def process_entry(
self, row: dict[str, Any], task_name: str | None = None, **kwargs: Any
) -> MMLUProParseEntry:
"""
Generate a question and expected answer from the given row.
Args:
row (dict[str, Any]): A data point to be formatted with MMLU Pro specific structure
containing 'question', 'options', 'answer', and 'answer_index' keys.
Returns:
MMLUParseEntry: The formatted entry object.
"""
task = task_name or self._get_current_task(row)
# Ensure task is not None
final_task = task or self._default_task
# Extract choices in order
raw_choices = row["options"]
choices = "\n".join(
f"{chr(65 + i)}. {choice}" for i, choice in enumerate(raw_choices)
)
raw_question = row["question"]
raw_answer = row["answer"]
answer_index = row["answer_index"]
question = f"Question: {raw_question}\n{choices}\nAnswer:"
answer_letter = chr(
65 + answer_index
) # Convert index to 'A', 'B', 'C', 'D', etc.
return MMLUProParseEntry.create(
question, answer_letter, raw_question, raw_choices, raw_answer, final_task
)
def get_dataset_description(self) -> DatasetDescription:
"""Returns description of the MMLU Pro dataset."""
return DatasetDescription.create(
name="MMLU Pro",
purpose="Provide a more robust and challenging multi-task language understanding benchmark with enhanced reasoning requirements",
source="https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro",
language="English",
category=["General Knowledge and Reasoning", "Advanced Reasoning"],
format="Multiple choice questions with up to 10 options (expanded from original 4)",
characteristics=(
"A more challenging version of MMLU containing 12K complex questions across various "
"disciplines. Features increased number of options (up to 10), stronger focus on "
"reasoning over pure knowledge, and reduced sensitivity to prompt variations. "
"Questions are sourced from original MMLU, STEM websites, TheoremQA, and SciBench, "
"with expert review and GPT-4 assisted distractor generation."
),
citation="""@article{wang2024mmlu,
title={Mmlu-pro: A more robust and challenging multi-task language understanding benchmark},
author={Wang, Yubo and Ma, Xueguang and Zhang, Ge and Ni, Yuansheng and Chandra, Abhranil and Guo, Shiguang and Ren, Weiming and Arulraj, Aaran and He, Xuan and Jiang, Ziyan and others},
journal={arXiv preprint arXiv:2406.01574},
year={2024}
}""",
additional_info={
"size": "12,000 complex questions",
"options": "Up to 10 choices per question",
"sources": [
"Original MMLU (filtered)",
"STEM Website",
"TheoremQA",
"SciBench",
],
"enhanced_subjects": [
"Biology",
"Business",
"Chemistry",
"Computer Science",
"Economics",
"Engineering",
"Math",
"Physics",
"Psychology",
],
"construction_process": [
"Initial MMLU filtering",
"Question collection from multiple sources",
"GPT-4 assisted option augmentation",
"Expert review by 10+ experts",
],
"prompt_sensitivity": "2% (reduced from 4-5% in MMLU)",
"reasoning_improvement": "20% higher CoT performance compared to PPL",
},
)
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
"""Returns the recommended evaluation metrics for MMLU Pro dataset."""
return [
EvaluationMetric.create(
name="accuracy",
type="classification",
description="Proportion of correctly answered multiple-choice questions (exact match)",
implementation="evaluate.load('accuracy')",
primary=True,
),
EvaluationMetric.create(
name="subject_accuracy",
type="classification",
description="Per-subject accuracy scores with focus on enhanced subjects",
implementation="custom_subject_accuracy",
primary=True,
),
EvaluationMetric.create(
name="reasoning_analysis",
type="analysis",
description="Comparison of Chain-of-Thought vs standard PPL performance",
implementation="custom_reasoning_analysis",
primary=True,
),
EvaluationMetric.create(
name="prompt_robustness",
type="analysis",
description="Analysis of performance stability across different prompt variations",
implementation="custom_prompt_sensitivity",
primary=False,
),
]
if __name__ == "__main__":
# Example usage of MMLU Pro parser
parser = MMLUProDatasetParser()
parser.load()
parser.parse()
# Get parsed data with correct type
parsed_data = parser.get_parsed_data
# Print example entry
if parsed_data:
example = parsed_data[0]
print("\nExample parsed entry:")
print(f"Task: {example.task_name}")
print(f"Question: {example.raw_question}")
print("Choices:")
for i, choice in enumerate(example.raw_choices):
print(f"{chr(65 + i)}. {choice}")
print(f"Correct Answer: {example.answer}")
|