Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,32 @@
|
|
1 |
from langchain_community.vectorstores import Chroma
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
-
from langchain_community.chat_models import
|
4 |
from langchain_core.output_parsers import StrOutputParser
|
5 |
from langchain import hub
|
6 |
import gradio as gr
|
7 |
-
import os
|
8 |
|
9 |
-
#
|
10 |
-
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
11 |
-
|
12 |
-
# Modelo remoto (si prefieres usar otro, aqu铆 se cambia)
|
13 |
-
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-3.5-turbo", temperature=0)
|
14 |
-
parser = StrOutputParser()
|
15 |
-
|
16 |
-
# Cargar embeddings (debe ser el mismo modelo que usaste en Colab)
|
17 |
embedding_function = HuggingFaceEmbeddings(
|
18 |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
19 |
model_kwargs={"device": "cpu"}
|
20 |
)
|
21 |
|
22 |
-
# Cargar
|
23 |
vectordb = Chroma(
|
24 |
persist_directory="chroma_db",
|
25 |
embedding_function=embedding_function
|
26 |
)
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def responder_pregunta(query):
|
30 |
docs = vectordb.similarity_search_with_score(query, k=5)
|
31 |
prompt = hub.pull("rlm/rag-prompt")
|
@@ -48,6 +49,6 @@ gr.Interface(
|
|
48 |
fn=responder_pregunta,
|
49 |
inputs=gr.Textbox(label="Pregunta sobre nutrici贸n"),
|
50 |
outputs="text",
|
51 |
-
title="Sistema
|
52 |
-
description="
|
53 |
).launch()
|
|
|
1 |
from langchain_community.vectorstores import Chroma
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.chat_models import ChatHuggingFace
|
4 |
from langchain_core.output_parsers import StrOutputParser
|
5 |
from langchain import hub
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
+
# Cargar embeddings (debe coincidir con los usados en Colab)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
embedding_function = HuggingFaceEmbeddings(
|
10 |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
11 |
model_kwargs={"device": "cpu"}
|
12 |
)
|
13 |
|
14 |
+
# Cargar la base de vectores persistida
|
15 |
vectordb = Chroma(
|
16 |
persist_directory="chroma_db",
|
17 |
embedding_function=embedding_function
|
18 |
)
|
19 |
|
20 |
+
# Cargar modelo de lenguaje gratuito y usable sin clave
|
21 |
+
llm = ChatHuggingFace(
|
22 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
23 |
+
task="text-generation",
|
24 |
+
model_kwargs={"temperature": 0.7, "max_new_tokens": 512}
|
25 |
+
)
|
26 |
+
|
27 |
+
# Crear la cadena de procesamiento
|
28 |
+
parser = StrOutputParser()
|
29 |
+
|
30 |
def responder_pregunta(query):
|
31 |
docs = vectordb.similarity_search_with_score(query, k=5)
|
32 |
prompt = hub.pull("rlm/rag-prompt")
|
|
|
49 |
fn=responder_pregunta,
|
50 |
inputs=gr.Textbox(label="Pregunta sobre nutrici贸n"),
|
51 |
outputs="text",
|
52 |
+
title="Sistema RAG sobre Nutrici贸n Cl铆nica",
|
53 |
+
description="Haz preguntas sobre el manual cl铆nico procesado con RAG, embeddings y Mistral 7B."
|
54 |
).launch()
|