Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.vectorstores import Chroma
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.chat_models import ChatOpenAI
|
4 |
+
from langchain_core.output_parsers import StrOutputParser
|
5 |
+
from langchain import hub
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Configurar tu clave de OpenAI (puedes usar otra fuente Hugging Face si prefieres)
|
10 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
11 |
+
|
12 |
+
# Modelo remoto (si prefieres usar otro, aqu铆 se cambia)
|
13 |
+
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-3.5-turbo", temperature=0)
|
14 |
+
parser = StrOutputParser()
|
15 |
+
|
16 |
+
# Cargar embeddings (debe ser el mismo modelo que usaste en Colab)
|
17 |
+
embedding_function = HuggingFaceEmbeddings(
|
18 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
19 |
+
model_kwargs={"device": "cpu"}
|
20 |
+
)
|
21 |
+
|
22 |
+
# Cargar vectorstore persistente
|
23 |
+
vectordb = Chroma(
|
24 |
+
persist_directory="chroma_db",
|
25 |
+
embedding_function=embedding_function
|
26 |
+
)
|
27 |
+
|
28 |
+
# Funci贸n RAG
|
29 |
+
def responder_pregunta(query):
|
30 |
+
docs = vectordb.similarity_search_with_score(query, k=5)
|
31 |
+
prompt = hub.pull("rlm/rag-prompt")
|
32 |
+
rag_chain = prompt | llm | parser
|
33 |
+
|
34 |
+
context = []
|
35 |
+
for doc, score in docs:
|
36 |
+
if score < 7:
|
37 |
+
context.append(doc.page_content)
|
38 |
+
|
39 |
+
if context:
|
40 |
+
context_text = "\n".join(context)
|
41 |
+
result = rag_chain.invoke({"context": context_text, "question": query})
|
42 |
+
return result
|
43 |
+
else:
|
44 |
+
return "No tengo informaci贸n suficiente para responder a esta pregunta."
|
45 |
+
|
46 |
+
# Interfaz Gradio
|
47 |
+
gr.Interface(
|
48 |
+
fn=responder_pregunta,
|
49 |
+
inputs=gr.Textbox(label="Pregunta sobre nutrici贸n"),
|
50 |
+
outputs="text",
|
51 |
+
title="Sistema de Preguntas sobre Nutrici贸n",
|
52 |
+
description="Pregunta sobre el contenido del manual cl铆nico. Basado en RAG con LangChain y Hugging Face."
|
53 |
+
).launch()
|