import os import time import uuid from typing import List, Tuple, Optional, Dict, Union import google.generativeai as genai import gradio as gr from PIL import Image print("google-generativeai:", genai.__version__) GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") TITLE = """

Gemini Playground 💬

""" SUBTITLE = """

Play with Gemini Pro and Gemini Pro Vision

""" DES = """
Run with your GOOGLE API KEY.
""" IMAGE_CACHE_DIRECTORY = "/tmp" IMAGE_WIDTH = 512 CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]] def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: return [sequence.strip() for sequence in stop_sequences.split(",")] if stop_sequences else None def preprocess_image(image: Image.Image) -> Optional[Image.Image]: if image: image_height = int(image.height * IMAGE_WIDTH / image.width) return image.resize((IMAGE_WIDTH, image_height)) def cache_pil_image(image: Image.Image) -> str: image_filename = f"{uuid.uuid4()}.jpeg" os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True) image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename) image.save(image_path, "JPEG") return image_path def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY: for file in files: image = Image.open(file).convert('RGB') image_preview = preprocess_image(image) if image_preview: # Display a preview of the uploaded image gr.Image(image_preview).render() image_path = cache_pil_image(image) chatbot.append(((image_path,), None)) return chatbot def user(text_prompt: str, chatbot: CHAT_HISTORY): if text_prompt: chatbot.append((text_prompt, None)) return "", chatbot def bot( google_key: str, files: Optional[List[str]], temperature: float, max_output_tokens: int, stop_sequences: str, top_k: int, top_p: float, chatbot: CHAT_HISTORY ): if not google_key and not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY is not set.") genai.configure(api_key=google_key if google_key else GOOGLE_API_KEY) generation_config = genai.types.GenerationConfig( temperature=temperature, max_output_tokens=max_output_tokens, stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences), top_k=top_k, top_p=top_p ) text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else [] image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else [] model_name = 'gemini-pro-vision' if files else 'gemini-pro' model = genai.GenerativeModel(model_name) response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config) chatbot[-1][1] = "" for chunk in response: for i in range(0, len(chunk.text), 10): section = chunk.text[i:i + 10] chatbot[-1][1] += section time.sleep(0.01) yield chatbot google_key_component = gr.Textbox( label="GOOGLE API KEY", value="", type="password", placeholder="...", info="Please provide your own GOOGLE_API_KEY for this app", visible=GOOGLE_API_KEY is None ) chatbot_component = gr.Chatbot( label='Gemini', bubble_full_width=False, scale=2, height=600 ) text_prompt_component = gr.Textbox( placeholder="Message...", show_label=False, autofocus=True, scale=8 ) upload_button_component = gr.UploadButton( label="Upload Images", file_count="multiple", file_types=["image"], scale=1 ) run_button_component = gr.Button(value="Run", variant="primary", scale=1) temperature_component = gr.Slider( minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature", ) max_output_tokens_component = gr.Slider( minimum=1, maximum=2048, value=1024, step=1, label="Token limit", ) stop_sequences_component = gr.Textbox( label="Add stop sequence", value="", type="text", placeholder="STOP, END", ) top_k_component = gr.Slider( minimum=1, maximum=40, value=32, step=1, label="Top-K", ) top_p_component = gr.Slider( minimum=0, maximum=1, value=1, step=0.01, label="Top-P", ) user_inputs = [ text_prompt_component, chatbot_component ] bot_inputs = [ google_key_component, upload_button_component, temperature_component, max_output_tokens_component, stop_sequences_component, top_k_component, top_p_component, chatbot_component ] with gr.Blocks() as demo: gr.HTML(TITLE) gr.HTML(SUBTITLE) gr.HTML(DES) with gr.Column(): google_key_component.render() chatbot_component.render() with gr.Row(): text_prompt_component.render() upload_button_component.render() run_button_component.render() with gr.Accordion("Parameters", open=False): temperature_component.render() max_output_tokens_component.render() stop_sequences_component.render() with gr.Accordion("Advanced", open=False): top_k_component.render() top_p_component.render() run_button_component.click( fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False ).then( fn=bot, inputs=bot_inputs, outputs=[chatbot_component], ) text_prompt_component.submit( fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False ).then( fn=bot, inputs=bot_inputs, outputs=[chatbot_component], ) upload_button_component.upload( fn=upload, inputs=[upload_button_component, chatbot_component], outputs=[chatbot_component], queue=False ) demo.queue(max_size=99).launch(debug=False, show_error=True)