Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,10 @@ import os
|
|
5 |
import time
|
6 |
import uuid
|
7 |
from typing import List, Tuple, Optional, Union
|
8 |
-
|
9 |
import google.generativeai as genai
|
10 |
import gradio as gr
|
11 |
from PIL import Image
|
|
|
12 |
from dotenv import load_dotenv
|
13 |
|
14 |
# Cargar las variables de entorno desde el archivo .env
|
@@ -39,34 +39,53 @@ def cache_pil_image(image: Image.Image) -> str:
|
|
39 |
image.save(image_path, "JPEG")
|
40 |
return image_path
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
|
43 |
for file in files:
|
44 |
-
# Detectar el tipo de archivo y manejarlo adecuadamente
|
45 |
mime_type = file.type if hasattr(file, 'type') else None
|
46 |
|
47 |
# Si es una imagen, la procesamos con PIL
|
48 |
if mime_type and mime_type.startswith('image'):
|
49 |
-
image = Image.open(file).convert('RGB')
|
50 |
image_preview = preprocess_image(image)
|
51 |
if image_preview:
|
52 |
# Mostrar una vista previa de la imagen cargada
|
53 |
gr.Image(image_preview).render()
|
54 |
image_path = cache_pil_image(image)
|
55 |
chatbot.append(((image_path,), None))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
else:
|
57 |
-
# Si
|
58 |
file_path = cache_file(file)
|
59 |
chatbot.append(((file_path,), None))
|
60 |
return chatbot
|
61 |
|
62 |
-
def cache_file(file: str) -> str:
|
63 |
-
file_filename = f"{uuid.uuid4()}_{os.path.basename(file.name)}"
|
64 |
-
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
|
65 |
-
file_path = os.path.join(IMAGE_CACHE_DIRECTORY, file_filename)
|
66 |
-
with open(file_path, 'wb') as f:
|
67 |
-
f.write(file.read())
|
68 |
-
return file_path
|
69 |
-
|
70 |
def user(text_prompt: str, chatbot: CHAT_HISTORY):
|
71 |
if text_prompt:
|
72 |
chatbot.append((text_prompt, None))
|
@@ -90,9 +109,9 @@ def bot(
|
|
90 |
)
|
91 |
|
92 |
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
|
93 |
-
|
94 |
model = genai.GenerativeModel(model_choice)
|
95 |
-
response = model.generate_content(text_prompt +
|
96 |
|
97 |
chatbot[-1][1] = ""
|
98 |
for chunk in response:
|
@@ -112,7 +131,7 @@ text_prompt_component = gr.Textbox(
|
|
112 |
placeholder="Message...", show_label=False, autofocus=True, scale=8
|
113 |
)
|
114 |
upload_button_component = gr.UploadButton(
|
115 |
-
label="Upload Files", file_count="multiple", scale=1
|
116 |
)
|
117 |
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
|
118 |
model_choice_component = gr.Dropdown(
|
@@ -134,8 +153,8 @@ bot_inputs = [
|
|
134 |
]
|
135 |
|
136 |
with gr.Blocks() as demo:
|
137 |
-
gr.HTML(
|
138 |
-
gr.HTML(
|
139 |
with gr.Column():
|
140 |
chatbot_component.render()
|
141 |
with gr.Row():
|
@@ -170,3 +189,4 @@ with gr.Blocks() as demo:
|
|
170 |
)
|
171 |
|
172 |
demo.queue(max_size=99).launch(debug=False, show_error=True)
|
|
|
|
5 |
import time
|
6 |
import uuid
|
7 |
from typing import List, Tuple, Optional, Union
|
|
|
8 |
import google.generativeai as genai
|
9 |
import gradio as gr
|
10 |
from PIL import Image
|
11 |
+
import PyPDF2
|
12 |
from dotenv import load_dotenv
|
13 |
|
14 |
# Cargar las variables de entorno desde el archivo .env
|
|
|
39 |
image.save(image_path, "JPEG")
|
40 |
return image_path
|
41 |
|
42 |
+
def cache_file(file) -> str:
|
43 |
+
"""Guarda el archivo tal cual en el sistema temporal."""
|
44 |
+
file_path = f"/tmp/{uuid.uuid4()}_{file.name}"
|
45 |
+
with open(file_path, "wb") as f:
|
46 |
+
f.write(file.read()) # Aquí es donde 'file' puede tener el método read()
|
47 |
+
return file_path
|
48 |
+
|
49 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
50 |
+
"""Extrae el texto de un archivo PDF."""
|
51 |
+
with open(pdf_path, 'rb') as f:
|
52 |
+
pdf_reader = PyPDF2.PdfReader(f)
|
53 |
+
text = ""
|
54 |
+
for page in pdf_reader.pages:
|
55 |
+
text += page.extract_text()
|
56 |
+
return text
|
57 |
+
|
58 |
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
|
59 |
for file in files:
|
|
|
60 |
mime_type = file.type if hasattr(file, 'type') else None
|
61 |
|
62 |
# Si es una imagen, la procesamos con PIL
|
63 |
if mime_type and mime_type.startswith('image'):
|
64 |
+
image = Image.open(file.name).convert('RGB') # Abrir el archivo con su ruta
|
65 |
image_preview = preprocess_image(image)
|
66 |
if image_preview:
|
67 |
# Mostrar una vista previa de la imagen cargada
|
68 |
gr.Image(image_preview).render()
|
69 |
image_path = cache_pil_image(image)
|
70 |
chatbot.append(((image_path,), None))
|
71 |
+
|
72 |
+
# Si es un archivo PDF, lo procesamos y extraemos el texto
|
73 |
+
elif mime_type and mime_type == "application/pdf":
|
74 |
+
pdf_content = extract_text_from_pdf(file.name)
|
75 |
+
chatbot.append((pdf_content, None))
|
76 |
+
|
77 |
+
# Si es un archivo de texto, lo procesamos directamente
|
78 |
+
elif mime_type and mime_type == "text/plain":
|
79 |
+
with open(file.name, 'r', encoding='utf-8') as f:
|
80 |
+
text_content = f.read()
|
81 |
+
chatbot.append((text_content, None))
|
82 |
+
|
83 |
else:
|
84 |
+
# Si es otro tipo de archivo, se guarda el archivo tal cual
|
85 |
file_path = cache_file(file)
|
86 |
chatbot.append(((file_path,), None))
|
87 |
return chatbot
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def user(text_prompt: str, chatbot: CHAT_HISTORY):
|
90 |
if text_prompt:
|
91 |
chatbot.append((text_prompt, None))
|
|
|
109 |
)
|
110 |
|
111 |
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
|
112 |
+
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files if file.type.startswith('image')] if files else []
|
113 |
model = genai.GenerativeModel(model_choice)
|
114 |
+
response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)
|
115 |
|
116 |
chatbot[-1][1] = ""
|
117 |
for chunk in response:
|
|
|
131 |
placeholder="Message...", show_label=False, autofocus=True, scale=8
|
132 |
)
|
133 |
upload_button_component = gr.UploadButton(
|
134 |
+
label="Upload Files", file_count="multiple", file_types=["image", "pdf", "text"], scale=1
|
135 |
)
|
136 |
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
|
137 |
model_choice_component = gr.Dropdown(
|
|
|
153 |
]
|
154 |
|
155 |
with gr.Blocks() as demo:
|
156 |
+
gr.HTML("<h1 align='center'>Gemini Playground ✨</h1>")
|
157 |
+
gr.HTML("<h2 align='center'>Play with Gemini Pro and Gemini Pro Vision</h2>")
|
158 |
with gr.Column():
|
159 |
chatbot_component.render()
|
160 |
with gr.Row():
|
|
|
189 |
)
|
190 |
|
191 |
demo.queue(max_size=99).launch(debug=False, show_error=True)
|
192 |
+
|