Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,42 @@
|
|
1 |
-
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
|
2 |
-
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
|
3 |
-
|
4 |
-
import os
|
5 |
-
import time
|
6 |
-
import uuid
|
7 |
-
from typing import List, Tuple, Optional, Union
|
8 |
-
from PIL import Image
|
9 |
-
import google.generativeai as genai
|
10 |
import gradio as gr
|
11 |
-
|
12 |
-
|
13 |
-
# Cargar las variables de entorno desde el archivo .env
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
print("google-generativeai:", genai.__version__)
|
17 |
-
|
18 |
-
# Obtener la clave de la API de las variables de entorno
|
19 |
-
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
20 |
-
|
21 |
-
# Verificar que la clave de la API esté configurada
|
22 |
-
if not GOOGLE_API_KEY:
|
23 |
-
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
|
24 |
-
|
25 |
-
# Configuración del modelo Gemini
|
26 |
-
generation_config = {
|
27 |
-
"temperature": 1,
|
28 |
-
"top_p": 0.95,
|
29 |
-
"top_k": 40,
|
30 |
-
"max_output_tokens": 8192,
|
31 |
-
"response_mime_type": "text/plain",
|
32 |
-
}
|
33 |
-
|
34 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
35 |
-
|
36 |
-
model = genai.GenerativeModel(
|
37 |
-
model_name="gemini-1.5-flash",
|
38 |
-
generation_config=generation_config
|
39 |
-
)
|
40 |
-
|
41 |
-
# Inicializar la sesión de chat
|
42 |
-
chat = model.start_chat(history=[])
|
43 |
-
|
44 |
-
# Función para transformar el historial de Gradio al formato de Gemini
|
45 |
-
def transform_history(history):
|
46 |
-
new_history = []
|
47 |
-
for chat_entry in history:
|
48 |
-
new_history.append({"parts": [{"text": chat_entry[0]}], "role": "user"})
|
49 |
-
new_history.append({"parts": [{"text": chat_entry[1]}], "role": "model"})
|
50 |
-
return new_history
|
51 |
-
|
52 |
-
# Función de respuesta que maneja el historial
|
53 |
-
def bot_response(
|
54 |
-
model_choice: str,
|
55 |
-
system_instruction: str,
|
56 |
-
text_prompt: str,
|
57 |
-
chatbot: list,
|
58 |
-
) -> Tuple[list, str]:
|
59 |
-
"""
|
60 |
-
Envía el mensaje al modelo, obtiene la respuesta y actualiza el historial.
|
61 |
-
"""
|
62 |
-
if not text_prompt.strip():
|
63 |
-
return chatbot, "Por favor, escribe un mensaje válido."
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
chat.history = transformed_history
|
70 |
-
|
71 |
-
# Enviar el mensaje y obtener la respuesta
|
72 |
-
response = chat.send_message(text_prompt)
|
73 |
-
response.resolve()
|
74 |
-
|
75 |
-
# Obtener el texto generado por el modelo
|
76 |
-
generated_text = response.text
|
77 |
-
|
78 |
-
# Actualizar el historial con la pregunta y la respuesta
|
79 |
-
chatbot.append((text_prompt, generated_text))
|
80 |
-
|
81 |
-
return chatbot, ""
|
82 |
-
|
83 |
-
# Componentes de la interfaz
|
84 |
-
chatbot_component = gr.Chatbot(label="Gemini", scale=2, height=300)
|
85 |
-
text_input_component = gr.Textbox(placeholder="Escribe un mensaje...", show_label=False, scale=8)
|
86 |
-
run_button_component = gr.Button(value="Enviar", variant="primary", scale=1)
|
87 |
-
model_dropdown_component = gr.Dropdown(
|
88 |
-
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
|
89 |
-
value="gemini-1.5-flash",
|
90 |
-
label="Selecciona el modelo",
|
91 |
-
scale=2
|
92 |
-
)
|
93 |
-
system_instruction_component = gr.Textbox(
|
94 |
-
placeholder="Escribe una instrucción para el sistema...",
|
95 |
-
label="Instrucción del sistema",
|
96 |
-
scale=8,
|
97 |
-
value="You are an assistant."
|
98 |
-
)
|
99 |
-
|
100 |
-
# Definir la interfaz
|
101 |
-
with gr.Blocks() as demo:
|
102 |
-
gr.HTML(TITLE)
|
103 |
-
gr.HTML(SUBTITLE)
|
104 |
-
with gr.Column():
|
105 |
-
model_dropdown_component.render()
|
106 |
-
chatbot_component.render()
|
107 |
with gr.Row():
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import gemini_gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
with gr.Blocks(fill_height=True) as demo:
|
5 |
+
|
6 |
+
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
|
7 |
+
with gr.Tab("Gemini"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
with gr.Row():
|
9 |
+
gemini_model = gr.Dropdown(
|
10 |
+
choices=[
|
11 |
+
'gemini-1.5-flash', # Fast and versatile performance
|
12 |
+
'gemini-1.5-flash-8b', # High volume, lower intelligence tasks
|
13 |
+
'gemini-1.5-pro', # Complex reasoning tasks
|
14 |
+
'gemini-exp-1114' # Quality improvements
|
15 |
+
],
|
16 |
+
value='gemini-1.5-pro', # Default to the most advanced model
|
17 |
+
label="Select Gemini Model",
|
18 |
+
interactive=True
|
19 |
+
)
|
20 |
+
|
21 |
+
gemini_interface = gr.load(
|
22 |
+
name=gemini_model.value,
|
23 |
+
src=gemini_gradio.registry,
|
24 |
+
fill_height=True,
|
25 |
+
chatbot=gr.Chatbot(height=250, type="messages")
|
26 |
+
)
|
27 |
+
|
28 |
+
def update_gemini_model(new_model):
|
29 |
+
return gr.load(
|
30 |
+
name=new_model,
|
31 |
+
src=gemini_gradio.registry,
|
32 |
+
fill_height=True,
|
33 |
+
chatbot=gr.Chatbot(height=250, type="messages")
|
34 |
+
)
|
35 |
+
|
36 |
+
gemini_model.change(
|
37 |
+
fn=update_gemini_model,
|
38 |
+
inputs=[gemini_model],
|
39 |
+
outputs=[gemini_interface]
|
40 |
+
)
|
41 |
+
|
42 |
+
demo.launch(ssr_mode=False)
|