File size: 4,819 Bytes
99ca542
 
 
f981512
8d45e13
616f0cb
99ca542
f981512
 
99ca542
f981512
 
5010813
f981512
56a81a0
99ca542
 
 
 
 
 
 
616f0cb
 
 
 
 
5010813
616f0cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ca542
 
616f0cb
 
99ca542
616f0cb
 
99ca542
616f0cb
 
 
99ca542
616f0cb
 
99ca542
616f0cb
 
 
 
 
 
 
 
99ca542
 
 
616f0cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ca542
616f0cb
 
 
 
 
 
99ca542
 
 
 
5010813
616f0cb
5010813
99ca542
616f0cb
99ca542
 
 
616f0cb
99ca542
616f0cb
 
 
 
 
 
99ca542
 
616f0cb
 
 
 
 
 
 
 
 
99ca542
 
 
616f0cb
 
 
 
 
 
 
 
99ca542
 
 
5010813
616f0cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import time
from typing import List, Tuple, Optional

import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

# Configurar la API de Google Generative AI
genai.configure(api_key=GOOGLE_API_KEY)

# Variables globales
chat = None  # Sesión de chat
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[str], Optional[str]]]


def preprocess_image(image: Image.Image) -> str:
    """Preprocesar la imagen y convertirla a texto descriptivo."""
    return "Image processed successfully."


def transform_history(history: CHAT_HISTORY) -> List[dict]:
    """Transformar el historial de Gradio al formato requerido por Gemini."""
    transformed = []
    for user_msg, model_msg in history:
        if user_msg:
            transformed.append({"role": "user", "content": user_msg})
        if model_msg:
            transformed.append({"role": "model", "content": model_msg})
    return transformed


def initialize_chat(model_name: str):
    """Inicializar una sesión de chat con el modelo seleccionado."""
    global chat
    model = genai.GenerativeModel(model_name=model_name)
    chat = model.start_chat(history=[])


def bot_with_logic(
    text_prompt: str,
    files: Optional[List[str]],
    model_choice: str,
    system_instruction: str,
    chatbot: CHAT_HISTORY,
):
    """Lógica del chatbot para manejar texto, imágenes o ambos."""
    global chat

    # Inicializar la sesión de chat si no existe
    if chat is None:
        initialize_chat(model_choice)

    # Configurar la instrucción del sistema
    chat.system_instruction = system_instruction or "You are a helpful assistant."

    # Caso 1: Solo texto
    if text_prompt and not files:
        response = chat.send_message(text_prompt)
        response.resolve()

        chatbot.append((text_prompt, ""))
        for i in range(len(response.text)):
            chatbot[-1] = (text_prompt, response.text[: i + 1])
            time.sleep(0.01)
            yield chatbot

    # Caso 2: Solo imágenes o texto + imágenes
    elif files:
        image_descriptions = [preprocess_image(Image.open(file)) for file in files]
        combined_prompt = f"{text_prompt}\n" + "\n".join(image_descriptions) if text_prompt else "\n".join(
            image_descriptions
        )

        response = chat.send_message(combined_prompt)
        response.resolve()

        chatbot.append((text_prompt or "[Images Uploaded]", ""))
        for i in range(len(response.text)):
            chatbot[-1] = (text_prompt or "[Images Uploaded]", response.text[: i + 1])
            time.sleep(0.01)
            yield chatbot


# Componentes de Gradio
chatbot_component = gr.Chatbot(label="Gemini Chat", height=400)
text_prompt_component = gr.Textbox(placeholder="Enter your message here...", show_label=False)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"])
run_button_component = gr.Button(value="Run", variant="primary")
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
)
system_instruction_component = gr.Textbox(placeholder="Enter system instruction...", label="System Instruction")


# Crear la interfaz
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Row():
        model_choice_component.render()
    chatbot_component.render()
    with gr.Row():
        text_prompt_component.render()
        upload_button_component.render()
        run_button_component.render()
    system_instruction_component.render()

    run_button_component.click(
        fn=bot_with_logic,
        inputs=[
            text_prompt_component,
            upload_button_component,
            model_choice_component,
            system_instruction_component,
            chatbot_component,
        ],
        outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=bot_with_logic,
        inputs=[
            text_prompt_component,
            upload_button_component,
            model_choice_component,
            system_instruction_component,
            chatbot_component,
        ],
        outputs=[chatbot_component],
    )

# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=True, show_error=True)