Spaces:
Running
Running
File size: 5,666 Bytes
99ca542 f981512 8d45e13 4ad1ff2 99ca542 f981512 99ca542 f981512 5010813 f981512 56a81a0 99ca542 4ad1ff2 99ca542 4ad1ff2 5010813 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 616f0cb 4ad1ff2 616f0cb 4ad1ff2 616f0cb 99ca542 4ad1ff2 616f0cb 4ad1ff2 99ca542 4ad1ff2 5010813 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 99ca542 4ad1ff2 99ca542 5010813 4ad1ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import time
import uuid
from typing import List, Tuple, Optional, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
model_choice: str,
system_instruction: Optional[str], # Sistema de instrucciones opcional
chatbot: CHAT_HISTORY
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=0.7,
max_output_tokens=8192,
top_k=10,
top_p=0.9
)
# Usar el valor por defecto para system_instruction si está vacío
if not system_instruction:
system_instruction = "1" # O puedes poner un valor predeterminado como "No system instruction provided."
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
model = genai.GenerativeModel(
model_name=model_choice,
generation_config=generation_config,
system_instruction=system_instruction # Usar el valor por defecto si está vacío
)
response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Componente para el acordeón que contiene el cuadro de texto para la instrucción del sistema
system_instruction_component = gr.Textbox(
placeholder="Enter system instruction...",
show_label=True,
scale=8
)
# Definir los componentes de entrada y salida
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [upload_button_component, model_choice_component, system_instruction_component, chatbot_component]
# Definir la interfaz de usuario
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Column():
# Campo de selección de modelo arriba
model_choice_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
# Crear el acordeón para la instrucción del sistema al final
with gr.Accordion("System Instruction", open=False): # Acordeón cerrado por defecto
system_instruction_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)
|