File size: 5,666 Bytes
99ca542
 
 
f981512
8d45e13
4ad1ff2
 
99ca542
f981512
 
99ca542
f981512
 
5010813
f981512
56a81a0
99ca542
 
 
 
4ad1ff2
 
99ca542
 
 
4ad1ff2
5010813
4ad1ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ca542
 
4ad1ff2
 
99ca542
4ad1ff2
 
 
 
 
 
 
 
 
 
99ca542
4ad1ff2
 
 
 
 
 
 
 
 
 
 
 
616f0cb
4ad1ff2
616f0cb
4ad1ff2
 
 
 
 
616f0cb
 
99ca542
4ad1ff2
 
 
 
 
 
616f0cb
4ad1ff2
 
 
 
 
99ca542
 
 
 
4ad1ff2
5010813
 
4ad1ff2
 
99ca542
4ad1ff2
99ca542
 
 
4ad1ff2
 
99ca542
4ad1ff2
 
 
 
 
 
 
 
 
99ca542
 
4ad1ff2
 
 
 
 
 
99ca542
 
 
4ad1ff2
 
 
 
 
 
 
 
 
 
 
99ca542
4ad1ff2
99ca542
 
5010813
4ad1ff2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import time
import uuid
from typing import List, Tuple, Optional, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

print("google-generativeai:", genai.__version__)

# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image_preview = preprocess_image(image)
        if image_preview:
            gr.Image(image_preview).render()
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    model_choice: str,
    system_instruction: Optional[str],  # Sistema de instrucciones opcional
    chatbot: CHAT_HISTORY
):
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")

    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=8192,
        top_k=10,
        top_p=0.9
    )

    # Usar el valor por defecto para system_instruction si está vacío
    if not system_instruction:
        system_instruction = "1"  # O puedes poner un valor predeterminado como "No system instruction provided."

    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
    
    model = genai.GenerativeModel(
        model_name=model_choice,
        generation_config=generation_config,
        system_instruction=system_instruction  # Usar el valor por defecto si está vacío
    )

    response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

# Componente para el acordeón que contiene el cuadro de texto para la instrucción del sistema
system_instruction_component = gr.Textbox(
    placeholder="Enter system instruction...",
    show_label=True,
    scale=8
)

# Definir los componentes de entrada y salida
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False, scale=2, height=300)
text_prompt_component = gr.Textbox(placeholder="Message...", show_label=False, autofocus=True, scale=8)
upload_button_component = gr.UploadButton(label="Upload Images", file_count="multiple", file_types=["image"], scale=1)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [upload_button_component, model_choice_component, system_instruction_component, chatbot_component]

# Definir la interfaz de usuario
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Column():
        # Campo de selección de modelo arriba
        model_choice_component.render()
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()

        # Crear el acordeón para la instrucción del sistema al final
        with gr.Accordion("System Instruction", open=False):  # Acordeón cerrado por defecto
            system_instruction_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)