import gradio as gr import requests import io import random import os import time from PIL import Image from deep_translator import GoogleTranslator import json # Project by Nymbo API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7): if prompt == "" or prompt == None: return None key = random.randint(0, 999) # Detectar el idioma del prompt y traducirlo al inglés translator = GoogleTranslator(target='en') try: prompt = translator.translate(prompt) except Exception as e: print(f"Error during translation: {e}") return None print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key}:\033[0m {prompt}') payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength } response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') return image except Exception as e: print(f"Error when trying to open the image: {e}") return None css = """ #app-container { max-width: 600px; margin-left: auto; margin-right: auto; background-color: #ffffff; /* Fondo blanco */ color: #333333; /* Texto gris oscuro */ } input, textarea, select { background-color: #f5f5f5; /* Fondo gris claro para inputs */ color: #333333; /* Texto gris oscuro en inputs */ border: 1px solid #cccccc; /* Borde gris claro en inputs */ } button { background-color: #f28f8f; /* Fondo rojo */ color: #ffffff; /* Texto blanco en botones */ border: 1px solid #f28f8f; /* Borde rojo en botones */ } button:hover { background-color: #e74c3c; /* Rojo oscuro en hover */ } h1, h2, h3, h4, h5, h6 { color: #f28f8f; /* Texto rojo en encabezados */ } """ with gr.Blocks(css=css) as app: gr.HTML("

FLUX.1-Dev

") with gr.Column(elem_id="app-container"): with gr.Row(): with gr.Column(elem_id="prompt-container"): with gr.Row(): text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") with gr.Row(): with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) with gr.Row(): text_button = gr.Button("Run", variant='primary', elem_id="gen-button") with gr.Row(): image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output) app.launch(show_api=False, share=False)