File size: 4,688 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
919ba89
e547b24
 
 
 
 
6f5a32e
e547b24
 
 
 
c7e1ae3
 
 
 
 
 
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
 
 
 
 
 
 
 
 
 
 
6f5a32e
 
e547b24
 
 
 
 
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
 
02f8cfa
bc84ac0
02f8cfa
 
73f7edc
c7e1ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
 
c7e1ae3
bc84ac0
02f8cfa
 
 
 
bc84ac0
02f8cfa
 
bc84ac0
02f8cfa
 
 
 
 
e547b24
02f8cfa
 
 
 
e547b24
02f8cfa
e547b24
c7e1ae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 999)
    
    # Detectar el idioma del prompt y traducirlo al inglés
    translator = GoogleTranslator(target='en')
    try:
        prompt = translator.translate(prompt)
    except Exception as e:
        print(f"Error during translation: {e}")
        return None

    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}

#app-container {
    background-color: #000000; /* Fondo negro */
    color: #FFFF00; /* Texto amarillo */
}

input, textarea, select {
    background-color: #FFFF00; /* Fondo amarillo para inputs */
    color: #000000; /* Texto negro en inputs */
    border: 1px solid #000000; /* Borde negro en inputs */
}

button {
    background-color: #FFFF00; /* Fondo amarillo en botones */
    color: #000000; /* Texto negro en botones */
    border: 1px solid #000000; /* Borde negro en botones */
}

button:hover {
    background-color: #FFD700; /* Amarillo dorado en hover */
}

h1, h2, h3, h4, h5, h6 {
    color: #FFFF00; /* Texto amarillo en encabezados */
}
"""

with gr.Blocks(css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)

app.launch(show_api=False, share=False)