Spaces:
Sleeping
Sleeping
File size: 4,156 Bytes
e547b24 919ba89 e547b24 0ecf720 e547b24 c7e1ae3 6f5a32e e547b24 6f5a32e e547b24 6f5a32e e547b24 6f5a32e e547b24 6f5a32e e547b24 0ecf720 54b5a7b 0ecf720 54b5a7b 211de11 deb7544 54b5a7b 02fa85d 0ecf720 02fa85d deb7544 0ecf720 e547b24 c7e1ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
# Project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
if not prompt:
return None
key = random.randint(0, 999)
# Detectar el idioma del prompt y traducirlo al inglés
translator = GoogleTranslator(target='en')
try:
prompt = translator.translate(prompt)
except Exception as e:
print(f"Error during translation: {e}")
return None
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
with gr.Blocks() as app:
gr.HTML("""
<center>
<h1>Dream Generator with Flux</h1>
<h2>Transforma tus sueños en imágenes vibrantes con un solo clic.</h2>
</center>
""")
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Row():
clear_button = gr.Button("Clear", elem_id="clear-button", variant="secondary", style={"border-color": "black", "border-width": "2px"})
generate_button = gr.Button("Generate", elem_id="generate-button", variant="primary", style={"border-color": "black", "border-width": "2px", "background-color": "green", "color": "white"})
with gr.Column(scale=1):
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
generate_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)
def clear_prompt():
return gr.Textbox.update(value="")
clear_button.click(clear_prompt, inputs=[], outputs=text_prompt)
app.launch(show_api=False, share=False)
|