Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
rom utils import download_url
|
| 2 |
+
import argparse
|
| 3 |
+
import numpy as np
|
| 4 |
+
import PIL.Image
|
| 5 |
+
import dnnlib
|
| 6 |
+
import dnnlib.tflib as tflib
|
| 7 |
+
import re
|
| 8 |
+
import sys
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import IPython.display
|
| 11 |
+
from math import ceil
|
| 12 |
+
from PIL import Image, ImageDraw
|
| 13 |
+
import os
|
| 14 |
+
import pickle
|
| 15 |
+
from utils import log_progress, imshow, create_image_grid, show_animation
|
| 16 |
+
import imageio
|
| 17 |
+
import glob
|
| 18 |
+
import gdown
|
| 19 |
+
import gradio as gr
|
| 20 |
+
|
| 21 |
+
class Rasm:
|
| 22 |
+
|
| 23 |
+
def __init__(self, mode = 'calligraphy'):
|
| 24 |
+
|
| 25 |
+
if mode == 'calligraphy':
|
| 26 |
+
url = 'https://drive.google.com/uc?id=138fdURGxdkOwZq7IWvnrGLcfo5VI8O1R'
|
| 27 |
+
|
| 28 |
+
else:
|
| 29 |
+
url = 'https://drive.google.com/uc?id=13h-alXGI0hbNOJy1qbmeoroXZSPBHEG2'
|
| 30 |
+
|
| 31 |
+
output = 'model.pkl'
|
| 32 |
+
print('Downloading networks from "%s"...' %url)
|
| 33 |
+
gdown.download(url, output, quiet=False)
|
| 34 |
+
dnnlib.tflib.init_tf()
|
| 35 |
+
with dnnlib.util.open_url(output) as fp:
|
| 36 |
+
self._G, self._D, self.Gs = pickle.load(fp)
|
| 37 |
+
self.noise_vars = [var for name, var in self.Gs.components.synthesis.vars.items() if name.startswith('noise')]
|
| 38 |
+
|
| 39 |
+
# Generates a list of images, based on a list of latent vectors (Z), and a list (or a single constant) of truncation_psi's.
|
| 40 |
+
def generate_images_in_w_space(self, dlatents, truncation_psi):
|
| 41 |
+
Gs_kwargs = dnnlib.EasyDict()
|
| 42 |
+
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
|
| 43 |
+
Gs_kwargs.randomize_noise = False
|
| 44 |
+
Gs_kwargs.truncation_psi = truncation_psi
|
| 45 |
+
# dlatent_avg = self.Gs.get_var('dlatent_avg') # [component]
|
| 46 |
+
|
| 47 |
+
imgs = []
|
| 48 |
+
for _, dlatent in log_progress(enumerate(dlatents), name = "Generating images"):
|
| 49 |
+
#row_dlatents = (dlatent[np.newaxis] - dlatent_avg) * np.reshape(truncation_psi, [-1, 1, 1]) + dlatent_avg
|
| 50 |
+
# dl = (dlatent-dlatent_avg)*truncation_psi + dlatent_avg
|
| 51 |
+
row_images = self.Gs.components.synthesis.run(dlatent, **Gs_kwargs)
|
| 52 |
+
imgs.append(PIL.Image.fromarray(row_images[0], 'RGB'))
|
| 53 |
+
return imgs
|
| 54 |
+
|
| 55 |
+
def generate_images(self, zs, truncation_psi, class_idx = None):
|
| 56 |
+
Gs_kwargs = dnnlib.EasyDict()
|
| 57 |
+
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
|
| 58 |
+
Gs_kwargs.randomize_noise = False
|
| 59 |
+
if not isinstance(truncation_psi, list):
|
| 60 |
+
truncation_psi = [truncation_psi] * len(zs)
|
| 61 |
+
|
| 62 |
+
imgs = []
|
| 63 |
+
label = np.zeros([1] + self.Gs.input_shapes[1][1:])
|
| 64 |
+
if class_idx is not None:
|
| 65 |
+
label[:, class_idx] = 1
|
| 66 |
+
else:
|
| 67 |
+
label = None
|
| 68 |
+
for z_idx, z in log_progress(enumerate(zs), size = len(zs), name = "Generating images"):
|
| 69 |
+
Gs_kwargs.truncation_psi = truncation_psi[z_idx]
|
| 70 |
+
noise_rnd = np.random.RandomState(1) # fix noise
|
| 71 |
+
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in self.noise_vars}) # [height, width]
|
| 72 |
+
images = self.Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
|
| 73 |
+
imgs.append(PIL.Image.fromarray(images[0], 'RGB'))
|
| 74 |
+
return imgs
|
| 75 |
+
|
| 76 |
+
def generate_from_zs(self, zs, truncation_psi = 0.5):
|
| 77 |
+
Gs_kwargs = dnnlib.EasyDict()
|
| 78 |
+
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
|
| 79 |
+
Gs_kwargs.randomize_noise = False
|
| 80 |
+
if not isinstance(truncation_psi, list):
|
| 81 |
+
truncation_psi = [truncation_psi] * len(zs)
|
| 82 |
+
|
| 83 |
+
for z_idx, z in log_progress(enumerate(zs), size = len(zs), name = "Generating images"):
|
| 84 |
+
Gs_kwargs.truncation_psi = truncation_psi[z_idx]
|
| 85 |
+
noise_rnd = np.random.RandomState(1) # fix noise
|
| 86 |
+
tflib.set_vars({var: noise_rnd.randn(*var.shape.as_list()) for var in self.noise_vars}) # [height, width]
|
| 87 |
+
images = self.Gs.run(z, None, **Gs_kwargs) # [minibatch, height, width, channel]
|
| 88 |
+
img = PIL.Image.fromarray(images[0], 'RGB')
|
| 89 |
+
imshow(img)
|
| 90 |
+
|
| 91 |
+
def generate_random_zs(self, size):
|
| 92 |
+
seeds = np.random.randint(2**32, size=size)
|
| 93 |
+
zs = []
|
| 94 |
+
for _, seed in enumerate(seeds):
|
| 95 |
+
rnd = np.random.RandomState(seed)
|
| 96 |
+
z = rnd.randn(1, *self.Gs.input_shape[1:]) # [minibatch, component]
|
| 97 |
+
zs.append(z)
|
| 98 |
+
return zs
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def generate_zs_from_seeds(self, seeds):
|
| 102 |
+
zs = []
|
| 103 |
+
for _, seed in enumerate(seeds):
|
| 104 |
+
rnd = np.random.RandomState(seed)
|
| 105 |
+
z = rnd.randn(1, *self.Gs.input_shape[1:]) # [minibatch, component]
|
| 106 |
+
zs.append(z)
|
| 107 |
+
return zs
|
| 108 |
+
|
| 109 |
+
# Generates a list of images, based on a list of seed for latent vectors (Z), and a list (or a single constant) of truncation_psi's.
|
| 110 |
+
def generate_images_from_seeds(self, seeds, truncation_psi):
|
| 111 |
+
ima = self.generate_images(self.generate_zs_from_seeds(seeds), truncation_psi)[0]
|
| 112 |
+
return ima, imshow(ima)
|
| 113 |
+
|
| 114 |
+
def generate_randomly(self, truncation_psi = 0.5):
|
| 115 |
+
ima, dis = self.generate_images_from_seeds(np.random.randint(4294967295, size=1), truncation_psi=truncation_psi)
|
| 116 |
+
return ima, dis
|
| 117 |
+
|
| 118 |
+
def generate_grid(self, truncation_psi = 0.7):
|
| 119 |
+
seeds = np.random.randint((2**32 - 1), size=9)
|
| 120 |
+
return create_image_grid(self.generate_images(self.generate_zs_from_seeds(seeds), truncation_psi), 0.7 , 3)
|
| 121 |
+
|
| 122 |
+
def generate_animation(self, size = 9, steps = 10, trunc_psi = 0.5):
|
| 123 |
+
seeds = list(np.random.randint((2**32) - 1, size=size))
|
| 124 |
+
seeds = seeds + [seeds[0]]
|
| 125 |
+
zs = self.generate_zs_from_seeds(seeds)
|
| 126 |
+
|
| 127 |
+
imgs = self.generate_images(self.interpolate(zs, steps = steps), trunc_psi)
|
| 128 |
+
movie_name = 'animation.mp4'
|
| 129 |
+
with imageio.get_writer(movie_name, mode='I') as writer:
|
| 130 |
+
for image in log_progress(list(imgs), name = "Creating animation"):
|
| 131 |
+
writer.append_data(np.array(image))
|
| 132 |
+
return show_animation(movie_name)
|
| 133 |
+
|
| 134 |
+
def convertZtoW(self, latent, truncation_psi=0.7, truncation_cutoff=9):
|
| 135 |
+
dlatent = self.Gs.components.mapping.run(latent, None) # [seed, layer, component]
|
| 136 |
+
dlatent_avg = self.Gs.get_var('dlatent_avg') # [component]
|
| 137 |
+
for i in range(truncation_cutoff):
|
| 138 |
+
dlatent[0][i] = (dlatent[0][i]-dlatent_avg)*truncation_psi + dlatent_avg
|
| 139 |
+
|
| 140 |
+
return dlatent
|
| 141 |
+
|
| 142 |
+
def interpolate(self, zs, steps = 10):
|
| 143 |
+
out = []
|
| 144 |
+
for i in range(len(zs)-1):
|
| 145 |
+
for index in range(steps):
|
| 146 |
+
fraction = index/float(steps)
|
| 147 |
+
out.append(zs[i+1]*fraction + zs[i]*(1-fraction))
|
| 148 |
+
return out
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
#-------------------- Rasm Demo--------------------------
|
| 152 |
+
|
| 153 |
+
def model(mode, output):
|
| 154 |
+
model=rasm.Rasm(mode=mode)
|
| 155 |
+
if output=='Generate Art Randomly':
|
| 156 |
+
ima,res= model.generate_randomly()
|
| 157 |
+
elif output=='Generate Art Grid':
|
| 158 |
+
ima = model.generate_grid()
|
| 159 |
+
elif output=='Generate Art Animation':
|
| 160 |
+
ima = model.generate_animation(size = 2, steps = 20)
|
| 161 |
+
return ima
|
| 162 |
+
|
| 163 |
+
imageout=gr.outputs.Image(model,
|
| 164 |
+
[
|
| 165 |
+
gr.Radio(["calligraphy", "mosaics"],label="Type of Arbic Art"),
|
| 166 |
+
gr.Radio(["Generate Art Randomly", "Generate Art Grid", "Generate Art Animation"],label="How do you prefer the output visualization" ),
|
| 167 |
+
],
|
| 168 |
+
outputs=imageout
|
| 169 |
+
)
|
| 170 |
+
demo.launch()
|