File size: 5,691 Bytes
34d098b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# データ操作ライブラリ
import os
import pandas as pd

# 時間関連ライブラリ
import time

# URLデータ収集ライブラリ
import requests
from bs4 import BeautifulSoup

# ユーザーエージェント
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"}

# サロンのIDリスト
tempo_list = [
    "H000139654",
    "H000143665",
    "H000160021",
    "H000209382",
    "H000223934",
    "H000225867",
    "H000229159",
    "H000231759",
    "H000233312",
    "H000237335",
    "H000237561",
    "H000265843",
    "H000273518",
    "H000286411",
    "H000307248",
    "H000307249",
    "H000307251",
    "H000307252",
    "H000307254",
    "H000307256",
    "H000307404",
    "H000316742",
    "H000319805",
    "H000319837",
    "H000348209",
    "H000356610",
    "H000361649",
    "H000368241",
    "H000377123",
    "H000391152",
    "H000396645",
    "H000396756",
    "H000402609",
    "H000402612",
    "H000406857",
    "H000407525",
    "H000410429",
    "H000410434",
    "H000416986",
    "H000419242",
    "H000434472",
    "H000449155",
    "H000449351",
    "H000477350",
    "H000491208",
    "H000494046",
    "H000500991",
    "H000503062",
    "H000511837",
    "H000522696",
    "H000553193",
    "H000585265",
    "H000585268",
    "H000610008",
    "H000628393",
    "H000640388",
    "H000640401",
    "H000649747",
    "H000655543",
    "H000707971",
    "H000715770",
]

# 収集するURLリスト作成
urls = []
for tempo in tempo_list:
    for j in range(1, 20):  # ページ1から14まで
        urls.append(f"https://beauty.hotpepper.jp/kr/sln{tempo}/review/PN{j}.html")

# 途中までのデータがあれば読み込む
csv_filename = "all_data.csv"
if os.path.exists(csv_filename):
    existing_df = pd.read_csv(csv_filename, encoding="utf-8-sig")
    scraped_urls = set(existing_df["source_url"])  # すでに取得済みのURL
    print(f"Loaded existing data: {len(existing_df)} rows")
else:
    existing_df = pd.DataFrame()
    scraped_urls = set()


# データスクレイピング関数
def scrap_data(url, headers):
    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        print(f"Failed to fetch {url}, status code:", response.status_code)
        return pd.DataFrame()  # 空のDataFrameを返す

    soup = BeautifulSoup(response.text, "html.parser")
    customers = []

    # 各レビューを処理
    for review in soup.find_all("div", class_="fr"):
        customer = {"source_url": url}  # どのURLから取得したか記録

        # 名前と詳細
        name_tag = review.find_previous("p", class_="fl w580 pL25")
        if name_tag:
            customer["name"] = name_tag.find("span", class_="b").text.strip() if name_tag.find("span", class_="b") else "N/A"
            # print(customer["name"])
            customer["details"] = name_tag.find("span", class_="mL5 fs10 fgGray").text.strip() if name_tag.find("span", class_="mL5 fs10 fgGray") else "N/A"
            # print(customer["details"])

        total_rating = review.find_next("li", class_="bdN fgGray b")
        if total_rating:
            # Correct the reference from name_tag to total_rating
            total_rating_span = total_rating.find("span", class_="mL5 mR10 fgPurple4")
            customer["total_rating"] = total_rating_span.text.strip() if total_rating_span else "N/A"
            # print(customer["total_rating"])

        # レビュー日
        date_tag = review.find("p", class_="fs10 fgGray")
        customer["review_date"] = date_tag.text.strip() if date_tag else "N/A"

        # 評価
        ratings = {}
        ratings_section = review.find_next("ul", class_="judgeList cFix")
        if ratings_section:
            for li in ratings_section.find_all("li"):
                label = li.find("span", class_="fgGray")
                value = li.find("span", class_="mL10 fgPurple4 b")
                if label and value:
                    ratings[label.text.strip()] = value.text.strip()
        customer["ratings"] = ratings

        # レビュー内容
        review_text = review.find_next("p", class_="mT10 wwbw")
        customer["review"] = review_text.text.strip() if review_text else "N/A"

        customers.append(customer)

    return pd.DataFrame(customers)


# 収集データのリスト
df_list = []
count = 0  # 何回目のスクレイピングかをカウント

for url in urls:
    if url in scraped_urls:
        print(f"Skipping already scraped: {url}")
        continue  # 既に取得済みならスキップ

    print(f"Scraping: {url}")
    data_df = scrap_data(url, headers)
    time.sleep(5)  # 負荷をかけないようにスリープ

    if not data_df.empty:
        df_list.append(data_df)
        scraped_urls.add(url)  # 取得済みリストに追加
        count += 1

    # 10回ごとに保存
    if count % 10 == 0 and df_list:
        temp_df = pd.concat(df_list, ignore_index=True)
        total_df = pd.concat([existing_df, temp_df], ignore_index=True)
        total_df.to_csv(csv_filename, index=False, encoding="utf-8-sig")
        print(f"Temporary save: {len(total_df)} rows written")
        df_list = []  # メモリ節約のためリストをリセット
        existing_df = total_df  # 既存データを更新

# 残りのデータを保存
if df_list:
    temp_df = pd.concat(df_list, ignore_index=True)
    total_df = pd.concat([existing_df, temp_df], ignore_index=True)
    total_df.to_csv(csv_filename, index=False, encoding="utf-8-sig")
    print(f"Final save: {len(total_df)} rows written")

print("Scraping completed.")