Spaces:
Sleeping
Sleeping
File size: 5,691 Bytes
34d098b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# データ操作ライブラリ
import os
import pandas as pd
# 時間関連ライブラリ
import time
# URLデータ収集ライブラリ
import requests
from bs4 import BeautifulSoup
# ユーザーエージェント
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"}
# サロンのIDリスト
tempo_list = [
"H000139654",
"H000143665",
"H000160021",
"H000209382",
"H000223934",
"H000225867",
"H000229159",
"H000231759",
"H000233312",
"H000237335",
"H000237561",
"H000265843",
"H000273518",
"H000286411",
"H000307248",
"H000307249",
"H000307251",
"H000307252",
"H000307254",
"H000307256",
"H000307404",
"H000316742",
"H000319805",
"H000319837",
"H000348209",
"H000356610",
"H000361649",
"H000368241",
"H000377123",
"H000391152",
"H000396645",
"H000396756",
"H000402609",
"H000402612",
"H000406857",
"H000407525",
"H000410429",
"H000410434",
"H000416986",
"H000419242",
"H000434472",
"H000449155",
"H000449351",
"H000477350",
"H000491208",
"H000494046",
"H000500991",
"H000503062",
"H000511837",
"H000522696",
"H000553193",
"H000585265",
"H000585268",
"H000610008",
"H000628393",
"H000640388",
"H000640401",
"H000649747",
"H000655543",
"H000707971",
"H000715770",
]
# 収集するURLリスト作成
urls = []
for tempo in tempo_list:
for j in range(1, 20): # ページ1から14まで
urls.append(f"https://beauty.hotpepper.jp/kr/sln{tempo}/review/PN{j}.html")
# 途中までのデータがあれば読み込む
csv_filename = "all_data.csv"
if os.path.exists(csv_filename):
existing_df = pd.read_csv(csv_filename, encoding="utf-8-sig")
scraped_urls = set(existing_df["source_url"]) # すでに取得済みのURL
print(f"Loaded existing data: {len(existing_df)} rows")
else:
existing_df = pd.DataFrame()
scraped_urls = set()
# データスクレイピング関数
def scrap_data(url, headers):
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to fetch {url}, status code:", response.status_code)
return pd.DataFrame() # 空のDataFrameを返す
soup = BeautifulSoup(response.text, "html.parser")
customers = []
# 各レビューを処理
for review in soup.find_all("div", class_="fr"):
customer = {"source_url": url} # どのURLから取得したか記録
# 名前と詳細
name_tag = review.find_previous("p", class_="fl w580 pL25")
if name_tag:
customer["name"] = name_tag.find("span", class_="b").text.strip() if name_tag.find("span", class_="b") else "N/A"
# print(customer["name"])
customer["details"] = name_tag.find("span", class_="mL5 fs10 fgGray").text.strip() if name_tag.find("span", class_="mL5 fs10 fgGray") else "N/A"
# print(customer["details"])
total_rating = review.find_next("li", class_="bdN fgGray b")
if total_rating:
# Correct the reference from name_tag to total_rating
total_rating_span = total_rating.find("span", class_="mL5 mR10 fgPurple4")
customer["total_rating"] = total_rating_span.text.strip() if total_rating_span else "N/A"
# print(customer["total_rating"])
# レビュー日
date_tag = review.find("p", class_="fs10 fgGray")
customer["review_date"] = date_tag.text.strip() if date_tag else "N/A"
# 評価
ratings = {}
ratings_section = review.find_next("ul", class_="judgeList cFix")
if ratings_section:
for li in ratings_section.find_all("li"):
label = li.find("span", class_="fgGray")
value = li.find("span", class_="mL10 fgPurple4 b")
if label and value:
ratings[label.text.strip()] = value.text.strip()
customer["ratings"] = ratings
# レビュー内容
review_text = review.find_next("p", class_="mT10 wwbw")
customer["review"] = review_text.text.strip() if review_text else "N/A"
customers.append(customer)
return pd.DataFrame(customers)
# 収集データのリスト
df_list = []
count = 0 # 何回目のスクレイピングかをカウント
for url in urls:
if url in scraped_urls:
print(f"Skipping already scraped: {url}")
continue # 既に取得済みならスキップ
print(f"Scraping: {url}")
data_df = scrap_data(url, headers)
time.sleep(5) # 負荷をかけないようにスリープ
if not data_df.empty:
df_list.append(data_df)
scraped_urls.add(url) # 取得済みリストに追加
count += 1
# 10回ごとに保存
if count % 10 == 0 and df_list:
temp_df = pd.concat(df_list, ignore_index=True)
total_df = pd.concat([existing_df, temp_df], ignore_index=True)
total_df.to_csv(csv_filename, index=False, encoding="utf-8-sig")
print(f"Temporary save: {len(total_df)} rows written")
df_list = [] # メモリ節約のためリストをリセット
existing_df = total_df # 既存データを更新
# 残りのデータを保存
if df_list:
temp_df = pd.concat(df_list, ignore_index=True)
total_df = pd.concat([existing_df, temp_df], ignore_index=True)
total_df.to_csv(csv_filename, index=False, encoding="utf-8-sig")
print(f"Final save: {len(total_df)} rows written")
print("Scraping completed.")
|