import random import streamlit as st from session_state import SessionState, get_state from images_mocker import ImagesMocker images_mocker = ImagesMocker() import booste from PIL import Image # Unfortunately Streamlit sharing does not allow to hide enviroment variables yet. # Do not copy this API key, go to https://www.booste.io/ and get your own, it is free! BOOSTE_API_KEY = "3818ba84-3526-4029-9dc8-ef3038697ea2" IMAGES_LINKS = ["https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg", "https://cdn.pixabay.com/photo/2019/09/06/04/25/beach-4455433_960_720.jpg", # "https://cdn.pixabay.com/photo/2019/10/19/12/21/hot-air-balloons-4561264_960_720.jpg", # "https://cdn.pixabay.com/photo/2019/12/17/18/20/peacock-4702197_960_720.jpg", # "https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg", # "https://cdn.pixabay.com/photo/2020/12/28/22/48/buddha-5868759_960_720.jpg", "https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg", "https://cdn.pixabay.com/photo/2020/11/04/15/29/coffee-beans-5712780_960_720.jpg", "https://cdn.pixabay.com/photo/2020/03/24/20/42/namibia-4965457_960_720.jpg", "https://cdn.pixabay.com/photo/2020/08/27/07/31/restaurant-5521372_960_720.jpg", # "https://cdn.pixabay.com/photo/2020/08/28/06/13/building-5523630_960_720.jpg", "https://cdn.pixabay.com/photo/2020/08/24/21/41/couple-5515141_960_720.jpg", "https://cdn.pixabay.com/photo/2020/01/31/07/10/billboards-4807268_960_720.jpg", "https://cdn.pixabay.com/photo/2017/07/31/20/48/shell-2560930_960_720.jpg", "https://cdn.pixabay.com/photo/2020/08/13/01/29/koala-5483931_960_720.jpg", # "https://cdn.pixabay.com/photo/2016/11/29/04/52/architecture-1867411_960_720.jpg", ] @st.cache # Cache this so that it doesn't change every time something changes in the page def select_random_dataset(): return random.sample(IMAGES_LINKS, 10) def limit_number_images(state: SessionState): """When moving between tasks sometimes the state of images can have too many samples""" if state.images is not None and len(state.images) > 1: state.images = [state.images[0]] def limit_number_prompts(state: SessionState): """When moving between tasks sometimes the state of prompts can have too many samples""" if state.prompts is not None and len(state.prompts) > 1: state.prompts = [state.prompts[0]] def is_valid_prediction_state(state: SessionState) -> bool: if state.images is None or len(state.images) < 1: st.error("Choose at least one image before predicting") return False if state.prompts is None or len(state.prompts) < 1: st.error("Write at least one prompt before predicting") return False return True def preprocess_image(image: Image.Image, max_size: int = 1200) -> Image.Image: """Set up a max size because otherwise the API sometimes breaks""" width_0, height_0 = image.size if max((width_0, height_0)) <= max_size: return image if width_0 > height_0: aspect_ratio = max_size / float(width_0) new_height = int(float(height_0) * float(aspect_ratio)) image = image.resize((max_size, new_height), Image.ANTIALIAS) return image else: aspect_ratio = max_size / float(height_0) new_width = int(float(width_0) * float(aspect_ratio)) image = image.resize((max_size, new_width), Image.ANTIALIAS) return image class Sections: @staticmethod def header(): st.markdown('' '', unsafe_allow_html=True) st.markdown("# CLIP Playground") st.markdown("### Try OpenAI's CLIP model in your browser") st.markdown(" ") st.markdown(" ") with st.beta_expander("What is CLIP?"): st.markdown("CLIP is a machine learning model that computes similarity between text " "(also called prompts) and images. It has been trained on a dataset with millions of diverse" " image-prompt pairs, which allows it to generalize to unseen examples." "
Check out [OpenAI's blogpost](https://openai.com/blog/clip/) for more details", unsafe_allow_html=True) col1, col2 = st.beta_columns(2) col1.image("https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-a.svg") col2.image("https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-b.svg") with st.beta_expander("What can CLIP do?"): st.markdown("#### Prompt ranking") st.markdown("Given different prompts and an image CLIP will rank the different prompts based on how well they describe the image") st.markdown("#### Image ranking") st.markdown("Given different images and a prompt CLIP will rank the different images based on how well they fit the description") st.markdown("#### Image classification") st.markdown("Similar to prompt ranking, given a set of classes CLIP can classify an image between them. " "Think of [Hotdog/ Not hotdog](https://www.youtube.com/watch?v=pqTntG1RXSY&ab_channel=tvpromos) without any training.") st.markdown(" ") st.markdown(" ") @staticmethod def image_uploader(state: SessionState, accept_multiple_files: bool): uploaded_images = st.file_uploader("Upload image", type=[".png", ".jpg", ".jpeg"], accept_multiple_files=accept_multiple_files) if (not accept_multiple_files and uploaded_images is not None) or (accept_multiple_files and len(uploaded_images) >= 1): images = [] if not accept_multiple_files: uploaded_images = [uploaded_images] for uploaded_image in uploaded_images: pil_image = Image.open(uploaded_image) pil_image = preprocess_image(pil_image) images.append(pil_image) state.images = images @staticmethod def image_picker(state: SessionState, default_text_input: str): col1, col2, col3 = st.beta_columns(3) with col1: default_image_1 = "https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg" st.image(default_image_1, use_column_width=True) if st.button("Select image 1"): state.images = [default_image_1] state.default_text_input = default_text_input with col2: default_image_2 = "https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg" st.image(default_image_2, use_column_width=True) if st.button("Select image 2"): state.images = [default_image_2] state.default_text_input = default_text_input with col3: default_image_3 = "https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg" st.image(default_image_3, use_column_width=True) if st.button("Select image 3"): state.images = [default_image_3] state.default_text_input = default_text_input @staticmethod def dataset_picker(state: SessionState): columns = st.beta_columns(5) state.dataset = select_random_dataset() image_idx = 0 for col in columns: col.image(state.dataset[image_idx]) image_idx += 1 col.image(state.dataset[image_idx]) image_idx += 1 if st.button("Select random dataset"): state.images = state.dataset state.default_text_input = "A sign that says 'SLOW DOWN'" @staticmethod def prompts_input(state: SessionState, input_label: str, prompt_prefix: str = ''): raw_text_input = st.text_input(input_label, value=state.default_text_input if state.default_text_input is not None else "") state.is_default_text_input = raw_text_input == state.default_text_input if raw_text_input: state.prompts = [prompt_prefix + class_name for class_name in raw_text_input.split(";") if len(class_name) > 1] @staticmethod def single_image_input_preview(state: SessionState): st.markdown("### Preview") col1, col2 = st.beta_columns([1, 2]) with col1: st.markdown("Image to classify") if state.images is not None: st.image(state.images[0], use_column_width=True) else: st.warning("Select an image") with col2: st.markdown("Labels to choose from") if state.prompts is not None: for prompt in state.prompts: st.markdown(f"* {prompt}") if len(state.prompts) < 2: st.warning("At least two prompts/classes are needed") else: st.warning("Enter the prompts/classes to classify from") @staticmethod def multiple_images_input_preview(state: SessionState): st.markdown("### Preview") st.markdown("Images to classify") col1, col2, col3 = st.beta_columns(3) if state.images is not None: for idx, image in enumerate(state.images): if idx < len(state.images) / 2: col1.image(state.images[idx], use_column_width=True) else: col2.image(state.images[idx], use_column_width=True) if len(state.images) < 2: col2.warning("At least 2 images required") else: col1.warning("Select an image") with col3: st.markdown("Query prompt") if state.prompts is not None: for prompt in state.prompts: st.write(prompt) else: st.warning("Enter the prompt to classify") @staticmethod def classification_output(state: SessionState): # Possible way of customize this https://discuss.streamlit.io/t/st-button-in-a-custom-layout/2187/2 if st.button("Predict") and is_valid_prediction_state(state): # PREDICT 🚀 with st.spinner("Predicting..."): if isinstance(state.images[0], str): clip_response = booste.clip(BOOSTE_API_KEY, prompts=state.prompts, images=state.images) else: images_mocker.calculate_image_id2image_lookup(state.images) images_mocker.start_mocking() clip_response = booste.clip(BOOSTE_API_KEY, prompts=state.prompts, images=images_mocker.image_ids) images_mocker.stop_mocking() st.markdown("### Results") # st.write(clip_response) if len(state.images) == 1: simplified_clip_results = [(prompt, list(results.values())[0]["probabilityRelativeToPrompts"]) for prompt, results in clip_response.items()] simplified_clip_results = sorted(simplified_clip_results, key=lambda x: x[1], reverse=True) for prompt, probability in simplified_clip_results: percentage_prob = int(probability * 100) st.markdown( f"### ![prob](https://progress-bar.dev/{percentage_prob}/?width=200)     {prompt}") else: st.markdown(f"### {state.prompts[0]}") assert len(state.prompts) == 1 if isinstance(state.images[0], str): simplified_clip_results = [(image, results["probabilityRelativeToImages"]) for image, results in list(clip_response.values())[0].items()] else: simplified_clip_results = [(images_mocker.image_id2image(image), results["probabilityRelativeToImages"]) for image, results in list(clip_response.values())[0].items()] simplified_clip_results = sorted(simplified_clip_results, key=lambda x: x[1], reverse=True) for image, probability in simplified_clip_results[:5]: col1, col2 = st.beta_columns([1, 3]) col1.image(image, use_column_width=True) percentage_prob = int(probability * 100) col2.markdown(f"### ![prob](https://progress-bar.dev/{percentage_prob}/?width=200)") is_default_image = isinstance(state.images[0], str) is_default_prediction = is_default_image and state.is_default_text_input if is_default_prediction: st.markdown("
:information_source: Try writing your own prompts and using your own pictures!", unsafe_allow_html=True) elif is_default_image: st.markdown("
:information_source: You can also use your own pictures!", unsafe_allow_html=True) elif state.is_default_text_input: st.markdown("
:information_source: Try writing your own prompts!" " It can be whatever you can think of", unsafe_allow_html=True) Sections.header() col1, col2 = st.beta_columns([1, 2]) col1.markdown(" "); col1.markdown(" ") col1.markdown("#### Task selection") task_name: str = col2.selectbox("", options=["Prompt ranking", "Image ranking", "Image classification"]) st.markdown("
", unsafe_allow_html=True) images_mocker.stop_mocking() # Sometimes it gets stuck mocking session_state = get_state() if task_name == "Image classification": Sections.image_uploader(session_state, accept_multiple_files=False) if session_state.images is None: st.markdown("or choose one from") Sections.image_picker(session_state, default_text_input="banana; boat; bird") input_label = "Enter the classes to chose from separated by a semi-colon. (f.x. `banana; boat; honesty; apple`)" Sections.prompts_input(session_state, input_label, prompt_prefix='A picture of a ') limit_number_images(session_state) Sections.single_image_input_preview(session_state) Sections.classification_output(session_state) elif task_name == "Prompt ranking": Sections.image_uploader(session_state, accept_multiple_files=False) if session_state.images is None: st.markdown("or choose one from") Sections.image_picker(session_state, default_text_input="A calm afternoon in the Mediterranean; " "A beautiful creature;" " Something that grows in tropical regions") input_label = "Enter the prompts to choose from separated by a semi-colon. " \ "(f.x. `An image that inspires; A feeling of loneliness; joyful and young; apple`)" Sections.prompts_input(session_state, input_label) limit_number_images(session_state) Sections.single_image_input_preview(session_state) Sections.classification_output(session_state) elif task_name == "Image ranking": Sections.image_uploader(session_state, accept_multiple_files=True) if session_state.images is None or len(session_state.images) < 2: st.markdown("or use this random dataset") Sections.dataset_picker(session_state) Sections.prompts_input(session_state, "Enter the prompt to query the images by") limit_number_prompts(session_state) Sections.multiple_images_input_preview(session_state) Sections.classification_output(session_state) st.markdown("



Made by [@JavierFnts](https://twitter.com/JavierFnts) | [How was CLIP Playground built?](https://twitter.com/JavierFnts/status/1363522529072214019)" "", unsafe_allow_html=True) session_state.sync()