File size: 9,584 Bytes
081801e
b0cb25e
 
ed1918f
081801e
ed1918f
 
 
 
 
 
 
081801e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1918f
b0cb25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081801e
b0cb25e
 
 
 
081801e
b0cb25e
 
 
 
081801e
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cb25e
 
 
 
 
 
 
 
 
081801e
b0cb25e
 
 
081801e
 
b0cb25e
 
 
 
 
081801e
b0cb25e
 
 
 
ed1918f
081801e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cb25e
 
 
 
 
 
 
081801e
b0cb25e
 
081801e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cb25e
 
 
 
 
ed1918f
b0cb25e
 
ed1918f
b0cb25e
 
 
081801e
b0cb25e
 
 
 
 
 
 
 
 
081801e
b0cb25e
 
 
 
 
081801e
 
 
 
ed1918f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import random
from typing import Optional, List

import booste
import streamlit as st

from session_state import SessionState, get_state

# Unfortunately Streamlit sharing does not allow to hide enviroment variables yet.
# Do not copy this API key, go to https://www.booste.io/ and get your own, it is free!
BOOSTE_API_KEY = "3818ba84-3526-4029-9dc8-ef3038697ea2"

IMAGES_LINKS = ["https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg",
                "https://cdn.pixabay.com/photo/2019/09/06/04/25/beach-4455433_960_720.jpg",
                "https://cdn.pixabay.com/photo/2019/10/19/12/21/hot-air-balloons-4561264_960_720.jpg",
                "https://cdn.pixabay.com/photo/2019/12/17/18/20/peacock-4702197_960_720.jpg",
                "https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/12/28/22/48/buddha-5868759_960_720.jpg",
                "https://cdn.pixabay.com/photo/2019/11/11/14/30/zebra-4618513_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/11/04/15/29/coffee-beans-5712780_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/03/24/20/42/namibia-4965457_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/08/27/07/31/restaurant-5521372_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/08/28/06/13/building-5523630_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/08/24/21/41/couple-5515141_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/01/31/07/10/billboards-4807268_960_720.jpg",
                "https://cdn.pixabay.com/photo/2017/07/31/20/48/shell-2560930_960_720.jpg",
                "https://cdn.pixabay.com/photo/2020/08/13/01/29/koala-5483931_960_720.jpg",
                "https://cdn.pixabay.com/photo/2016/11/29/04/52/architecture-1867411_960_720.jpg",
                ]

@st.cache
def select_random_dataset():
    return random.sample(IMAGES_LINKS, 10)


class Sections:
    @staticmethod
    def header():
        st.markdown("# CLIP playground")
        st.markdown("### Try OpenAI's CLIP model in your browser")
        st.markdown(" ");
        st.markdown(" ")
        with st.beta_expander("What is CLIP?"):
            st.markdown("Nice CLIP explaination")
        st.markdown(" ");
        st.markdown(" ")

    @staticmethod
    def image_uploader(accept_multiple_files: bool) -> Optional[List[str]]:
        uploaded_image = st.file_uploader("Upload image", type=[".png", ".jpg", ".jpeg"],
                                          accept_multiple_files=accept_multiple_files)

    @staticmethod
    def image_picker(state: SessionState):
        col1, col2, col3 = st.beta_columns(3)
        with col1:
            default_image_1 = "https://cdn.pixabay.com/photo/2014/10/13/21/34/clipper-487503_960_720.jpg"
            st.image(default_image_1, use_column_width=True)
            if st.button("Select image 1"):
                state.images = [default_image_1]
        with col2:
            default_image_2 = "https://cdn.pixabay.com/photo/2019/12/17/18/20/peacock-4702197_960_720.jpg"
            st.image(default_image_2, use_column_width=True)
            if st.button("Select image 2"):
                state.images = [default_image_2]
        with col3:
            default_image_3 = "https://cdn.pixabay.com/photo/2016/11/15/16/24/banana-1826760_960_720.jpg"
            st.image(default_image_3, use_column_width=True)
            if st.button("Select image 3"):
                state.images = [default_image_3]

    @staticmethod
    def dataset_picker(state: SessionState):
        columns = st.beta_columns(5)
        state.dataset = select_random_dataset()
        image_idx = 0
        for col in columns:
            col.image(state.dataset[image_idx])
            image_idx += 1
            col.image(state.dataset[image_idx])
            image_idx += 1
        if st.button("Select random dataset"):
            state.images = state.dataset

    @staticmethod
    def prompts_input(state: SessionState, input_label: str, prompt_prefix: str = ''):
        raw_classes = st.text_input(input_label)
        if raw_classes:
            state.prompts = [prompt_prefix + class_name for class_name in raw_classes.split(";") if len(class_name) > 1]
            state.prompt_prefix = prompt_prefix

    @staticmethod
    def single_image_input_preview(state: SessionState):
        col1, col2 = st.beta_columns([2, 1])
        with col1:
            st.markdown("Image to classify")
            if state.images is not None:
                st.image(state.images[0], use_column_width=True)
            else:
                st.warning("Select an image")

        with col2:
            st.markdown("Labels to choose from")
            if state.prompts is not None:
                for prompt in state.prompts:
                    st.write(prompt[len(state.prompt_prefix):])
            else:
                st.warning("Enter the classes to classify from")

    @staticmethod
    def multiple_images_input_preview(state: SessionState):
        st.markdown("Images to classify")
        col1, col2, col3 = st.beta_columns(3)
        if state.images is not None:
            for idx, image in enumerate(state.images):
                if idx < len(state.images) / 2:
                    col1.image(state.images[idx], use_column_width=True)
                else:
                    col2.image(state.images[idx], use_column_width=True)
        else:
            col1.warning("Select an image")

        with col3:
            st.markdown("Query prompt")
            if state.prompts is not None:
                for prompt in state.prompts:
                    st.write(prompt[len(state.prompt_prefix):])
            else:
                st.warning("Enter the prompt to classify")

    @staticmethod
    def classification_output(state: SessionState):
        # Possible way of customize this https://discuss.streamlit.io/t/st-button-in-a-custom-layout/2187/2
        if st.button("Predict"):
            with st.spinner("Predicting..."):
                clip_response = booste.clip(BOOSTE_API_KEY,
                                            prompts=state.prompts,
                                            images=state.images,
                                            pretty_print=True)
                st.markdown("### Results")
                # st.write(clip_response)
                if len(state.images) == 1:
                    simplified_clip_results = [(prompt[len(state.prompt_prefix):],
                                                list(results.values())[0]["probabilityRelativeToPrompts"])
                                               for prompt, results in clip_response.items()]
                    simplified_clip_results = sorted(simplified_clip_results, key=lambda x: x[1], reverse=True)

                    for prompt, probability in simplified_clip_results:
                        percentage_prob = int(probability * 100)
                        st.markdown(
                            f"### ![prob](https://progress-bar.dev/{percentage_prob}/?width=200) &nbsp &nbsp {prompt}")
                else:
                    st.markdown(f"### {state.prompts[0]}")
                    assert len(state.prompts) == 1
                    simplified_clip_results = [(image, results["probabilityRelativeToImages"]) for image, results
                                               in list(clip_response.values())[0].items()]
                    simplified_clip_results = sorted(simplified_clip_results, key=lambda x: x[1], reverse=True)
                    for image, probability in simplified_clip_results[:5]:
                        col1, col2 = st.beta_columns([1, 3])
                        col1.image(image, use_column_width=True)
                        percentage_prob = int(probability * 100)
                        col2.markdown(f"### ![prob](https://progress-bar.dev/{percentage_prob}/?width=200)")



task_name: str = st.sidebar.radio("Task", options=["Image classification", "Image ranking", "Prompt ranking"])
session_state = get_state()
if task_name == "Image classification":
    Sections.header()
    Sections.image_uploader(accept_multiple_files=False)
    st.markdown("or choose one from")
    Sections.image_picker(session_state)
    input_label = "Enter the classes to chose from separated by a semi-colon. (f.x. `banana; boat; honesty; apple`)"
    Sections.prompts_input(session_state, input_label, prompt_prefix='A picture of a ')
    Sections.single_image_input_preview(session_state)
    Sections.classification_output(session_state)
elif task_name == "Prompt ranking":
    Sections.header()
    Sections.image_uploader(accept_multiple_files=False)
    st.markdown("or choose one from")
    Sections.image_picker(session_state)
    input_label = "Enter the prompts to choose from separated by a semi-colon. " \
                  "(f.x. `An image that inspires; A feeling of loneliness; joyful and young; apple`)"
    Sections.prompts_input(session_state, input_label)
    Sections.single_image_input_preview(session_state)
    Sections.classification_output(session_state)
elif task_name == "Image ranking":
    Sections.header()
    Sections.image_uploader(accept_multiple_files=True)
    st.markdown("or use random dataset")
    Sections.dataset_picker(session_state)
    Sections.prompts_input(session_state, "Enter the prompt to query the images by")
    Sections.multiple_images_input_preview(session_state)
    Sections.classification_output(session_state)

session_state.sync()