from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch # Load a smaller model that fits within 16GB RAM model_name = "deepseek-ai/deepseek-coder-1.3b-instruct" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # Load model in CPU-friendly format (low precision for efficiency) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float32, # Use float32 since CPU-only device_map="cpu" # Ensure it runs only on CPU ) # Function to generate comments def generate_code_comments(code_snippet): prompt = f"### Code:\n{code_snippet}\n### Add meaningful comments to this code:\n" inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) outputs = model.generate(**inputs, max_length=512) commented_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return commented_code # Create Gradio interface iface = gr.Interface( fn=generate_code_comments, inputs="text", outputs="text", title="AI Code Comment Generator", description="Enter a code snippet, and the AI will add meaningful comments.", ) iface.launch()