Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,29 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
-
#
|
5 |
-
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Function to generate comments
|
10 |
def generate_code_comments(code_snippet):
|
11 |
prompt = f"### Code:\n{code_snippet}\n### Add meaningful comments to this code:\n"
|
12 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
13 |
outputs = model.generate(**inputs, max_length=512)
|
14 |
commented_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
return commented_code
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
|
5 |
+
# Model name
|
6 |
+
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
7 |
+
|
8 |
+
# Use quantization (4-bit) to reduce memory usage
|
9 |
+
bnb_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True, # Use 4-bit quantization
|
11 |
+
bnb_4bit_compute_dtype=torch.float16, # Reduce precision
|
12 |
+
bnb_4bit_use_double_quant=True, # Further optimize memory
|
13 |
+
)
|
14 |
+
|
15 |
+
# Load model with optimizations
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
quantization_config=bnb_config,
|
20 |
+
device_map="auto" # Automatically chooses best device (CPU/GPU)
|
21 |
+
)
|
22 |
|
23 |
# Function to generate comments
|
24 |
def generate_code_comments(code_snippet):
|
25 |
prompt = f"### Code:\n{code_snippet}\n### Add meaningful comments to this code:\n"
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
outputs = model.generate(**inputs, max_length=512)
|
28 |
commented_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
return commented_code
|