Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import gradio as gr | |
| import torch | |
| # Load a smaller model that fits within 16GB RAM | |
| model_name = "deepseek-ai/deepseek-coder-1.3b-instruct" | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Load model in CPU-friendly format (low precision for efficiency) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float32, # Use float32 since CPU-only | |
| device_map="cpu" # Ensure it runs only on CPU | |
| ) | |
| # Function to generate comments | |
| def generate_code_comments(code_snippet): | |
| prompt = f"### Code:\n{code_snippet}\n### Add meaningful comments to this code:\n" | |
| inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
| outputs = model.generate(**inputs, max_length=512) | |
| commented_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return commented_code | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_code_comments, | |
| inputs="text", | |
| outputs="text", | |
| title="AI Code Comment Generator", | |
| description="Enter a code snippet, and the AI will add meaningful comments.", | |
| ) | |
| iface.launch() | |