import streamlit as st import spacy import torch from transformers import BertTokenizer, BertModel from transformers.models.bert.modeling_bert import BertForMaskedLM from models.spabert.models.spatial_bert_model import SpatialBertConfig, SpatialBertForMaskedLM, SpatialBertModel from models.spabert.utils.common_utils import load_spatial_bert_pretrained_weights from PIL import Image device = torch.device('cpu') #Spacy Initialization Section nlp = spacy.load("./models/en_core_web_sm") #BERT Initialization Section bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") bert_model = BertModel.from_pretrained("bert-base-uncased") bert_model.to(device) bert_model.eval() #SpaBERT Initialization Section data_file_path = 'models/spabert/datasets/SPABERT_finetuning_data_combined.json' pretrained_model_path = 'models/spabert/datasets/fine-spabert-base-uncased-finetuned-osm-mn.pth' #b_model = BertForMaskedLM.from_pretrained('bert-base-uncased') #b_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') config = SpatialBertConfig() config.output_hidden_states = True spaBERT_model = SpatialBertForMaskedLM(config) pre_trained_model = torch.load(pretrained_model_path, map_location=torch.device('cpu')) spaBERT_model.load_state_dict(bert_model.state_dict(), strict = False) spaBERT_model.load_state_dict(pre_trained_model, strict=False) spaBERT_model.to(device) spaBERT_model.eval() st.title("SpaGAN Demo") st.write("Enter a text, and the system will highlight the geo-entities within it.") # Define a color map and descriptions for different entity types COLOR_MAP = { 'FAC': ('red', 'Facilities (e.g., buildings, airports)'), 'ORG': ('blue', 'Organizations (e.g., companies, institutions)'), 'LOC': ('purple', 'Locations (e.g., mountain ranges, water bodies)'), 'GPE': ('green', 'Geopolitical Entities (e.g., countries, cities)') } # Display the color key st.write("**Color Key:**") for label, (color, description) in COLOR_MAP.items(): st.markdown(f"- **{label}**: {color} - {description}", unsafe_allow_html=True) # Text input user_input = st.text_area("Input Text", height=200) # Process the text when the button is clicked if st.button("Highlight Geo-Entities"): if user_input.strip(): # Process the text using spaCy doc = nlp(user_input) # Highlight geo-entities with different colors highlighted_text = user_input for ent in reversed(doc.ents): if ent.label_ in COLOR_MAP: color = COLOR_MAP[ent.label_][0] highlighted_text = ( highlighted_text[:ent.start_char] + f"{ent.text}" + highlighted_text[ent.end_char:] ) # Display the highlighted text with HTML support st.markdown(highlighted_text, unsafe_allow_html=True) else: st.error("Please enter some text.")