Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -90,15 +90,22 @@ def process_entity(batch, model, device):
|
|
90 |
spaBERT_embedding = spaBERT_embedding[:, 0, :].detach() # [batch_size, hidden_size]
|
91 |
|
92 |
#return pivot_embeddings.cpu().numpy(), input_ids.cpu().numpy()
|
93 |
-
return spaBERT_embedding, input_ids
|
94 |
|
95 |
spaBERT_embeddings = []
|
|
|
96 |
for batch in (data_loader):
|
97 |
-
spaBERT_embedding, input_ids = process_entity(batch, spaBERT_model, device)
|
98 |
spaBERT_embeddings.append(spaBERT_embedding)
|
|
|
99 |
|
100 |
-
|
|
|
|
|
|
|
101 |
|
|
|
|
|
102 |
|
103 |
#Get BERT Embedding for review
|
104 |
def get_bert_embedding(review_text):
|
@@ -257,7 +264,7 @@ selected_key = user_selection.split(" (")[0] # Remove the label part
|
|
257 |
selected_review = example_reviews[selected_key]
|
258 |
|
259 |
# Process the text when the button is clicked
|
260 |
-
if st.button("
|
261 |
if selected_review.strip():
|
262 |
bert_embedding = get_bert_embedding(selected_review)
|
263 |
spaBert_embedding = processSpatialEntities(selected_review,nlp)
|
@@ -270,14 +277,7 @@ if st.button("Highlight Geo-Entities"):
|
|
270 |
st.write("Concatenated Embedding:", combined_embedding)
|
271 |
|
272 |
prediction = get_prediction(combined_embedding)
|
273 |
-
|
274 |
-
if(prediction == 0):
|
275 |
-
st.write("Prediction: Not Spam")
|
276 |
-
elif(prediction == 1):
|
277 |
-
st.write("Prediction: Spam")
|
278 |
-
else:
|
279 |
-
st.write("error during prediction")
|
280 |
-
|
281 |
# Process the text using spaCy
|
282 |
doc = nlp(selected_review)
|
283 |
|
@@ -294,5 +294,14 @@ if st.button("Highlight Geo-Entities"):
|
|
294 |
|
295 |
# Display the highlighted text with HTML support
|
296 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
else:
|
298 |
st.error("Please select a review.")
|
|
|
90 |
spaBERT_embedding = spaBERT_embedding[:, 0, :].detach() # [batch_size, hidden_size]
|
91 |
|
92 |
#return pivot_embeddings.cpu().numpy(), input_ids.cpu().numpy()
|
93 |
+
return spaBERT_embedding, input_ids, pseudo_sentence_decoded
|
94 |
|
95 |
spaBERT_embeddings = []
|
96 |
+
pseudo_sentences = []
|
97 |
for batch in (data_loader):
|
98 |
+
spaBERT_embedding, input_ids, pseudo_sentence = process_entity(batch, spaBERT_model, device)
|
99 |
spaBERT_embeddings.append(spaBERT_embedding)
|
100 |
+
pseudo_sentences.append(pseudo_sentence)
|
101 |
|
102 |
+
# Print all the pseudo sentences
|
103 |
+
print("Pseudo Sentences:")
|
104 |
+
for idx, sentence in enumerate(pseudo_sentences):
|
105 |
+
print(f"{idx + 1}: {sentence}")
|
106 |
|
107 |
+
|
108 |
+
embedding_cache = {}
|
109 |
|
110 |
#Get BERT Embedding for review
|
111 |
def get_bert_embedding(review_text):
|
|
|
264 |
selected_review = example_reviews[selected_key]
|
265 |
|
266 |
# Process the text when the button is clicked
|
267 |
+
if st.button("Process Review"):
|
268 |
if selected_review.strip():
|
269 |
bert_embedding = get_bert_embedding(selected_review)
|
270 |
spaBert_embedding = processSpatialEntities(selected_review,nlp)
|
|
|
277 |
st.write("Concatenated Embedding:", combined_embedding)
|
278 |
|
279 |
prediction = get_prediction(combined_embedding)
|
280 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
# Process the text using spaCy
|
282 |
doc = nlp(selected_review)
|
283 |
|
|
|
294 |
|
295 |
# Display the highlighted text with HTML support
|
296 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
297 |
+
|
298 |
+
#Display the models prediction
|
299 |
+
if(prediction == 0):
|
300 |
+
st.write("Prediction: Not Spam")
|
301 |
+
elif(prediction == 1):
|
302 |
+
st.write("Prediction: Spam")
|
303 |
+
else:
|
304 |
+
st.write("error during prediction")
|
305 |
+
|
306 |
else:
|
307 |
st.error("Please select a review.")
|