Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -214,59 +214,6 @@ def load_reviews_from_file(file_path):
|
|
214 |
st.error(f"File not found: {file_path}")
|
215 |
return reviews
|
216 |
|
217 |
-
# Function to load reviews from a CSV file
|
218 |
-
def load_reviews_from_csv(file_path):
|
219 |
-
try:
|
220 |
-
df = pd.read_csv(file_path)
|
221 |
-
return df
|
222 |
-
except FileNotFoundError:
|
223 |
-
st.error(f"File not found: {file_path}")
|
224 |
-
return None
|
225 |
-
|
226 |
-
# Function to process each review in the CSV and get the model's predictions
|
227 |
-
def process_csv_reviews(df):
|
228 |
-
true_reviews = []
|
229 |
-
for _, row in df.iterrows():
|
230 |
-
review_text = row['Review']
|
231 |
-
label = row['Label']
|
232 |
-
|
233 |
-
# Get BERT embedding for the review text
|
234 |
-
bert_embedding = get_bert_embedding(review_text.lower())
|
235 |
-
|
236 |
-
# Get SpaBERT embedding for geo-entities
|
237 |
-
spaBert_embedding, _ = processSpatialEntities(review_text, nlp)
|
238 |
-
|
239 |
-
# Concatenate BERT and SpaBERT embeddings
|
240 |
-
combined_embedding = torch.cat((bert_embedding, spaBert_embedding), dim=-1)
|
241 |
-
|
242 |
-
# Get model prediction
|
243 |
-
prediction = get_prediction(combined_embedding)
|
244 |
-
|
245 |
-
# If prediction is "Not Spam" (0), store the review
|
246 |
-
if prediction == 0:
|
247 |
-
true_reviews.append((review_text, label))
|
248 |
-
|
249 |
-
# Convert to a DataFrame for easy display
|
250 |
-
return pd.DataFrame(true_reviews, columns=['Review', 'Label'])
|
251 |
-
|
252 |
-
st.write("### Process Filtered Reviews CSV")
|
253 |
-
csv_file_path = "models/spabert/datasets/filtered_reviews.csv"
|
254 |
-
|
255 |
-
if st.button("Process CSV and Find True Reviews"):
|
256 |
-
# Load the CSV file
|
257 |
-
df = load_reviews_from_csv(csv_file_path)
|
258 |
-
|
259 |
-
if df is not None:
|
260 |
-
# Filter reviews predicted to be "Not Spam"
|
261 |
-
true_reviews_df = process_csv_reviews(df)
|
262 |
-
|
263 |
-
if not true_reviews_df.empty:
|
264 |
-
st.write("### Reviews Predicted to be Not Spam:")
|
265 |
-
st.dataframe(true_reviews_df)
|
266 |
-
else:
|
267 |
-
st.write("No reviews were predicted to be Not Spam.")
|
268 |
-
else:
|
269 |
-
st.error("Could not load CSV file.")
|
270 |
|
271 |
|
272 |
#Demo Section
|
|
|
214 |
st.error(f"File not found: {file_path}")
|
215 |
return reviews
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
|
219 |
#Demo Section
|