Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,14 +40,14 @@ spaBERT_model.eval()
|
|
| 40 |
#Load data using SpatialDataset
|
| 41 |
spatialDataset = PbfMapDataset(data_file_path = data_file_path,
|
| 42 |
tokenizer = bert_tokenizer,
|
| 43 |
-
max_token_len = 256,
|
| 44 |
#max_token_len = max_seq_length, #Originally 300
|
| 45 |
distance_norm_factor = 0.0001,
|
| 46 |
spatial_dist_fill = 20,
|
| 47 |
with_type = False,
|
| 48 |
sep_between_neighbors = True,
|
| 49 |
label_encoder = None,
|
| 50 |
-
mode = None)
|
| 51 |
|
| 52 |
data_loader = DataLoader(spatialDataset, batch_size=1, num_workers=0, shuffle=False, pin_memory=False, drop_last=False) #issue needs to be fixed with num_workers not stopping after finished
|
| 53 |
|
|
@@ -81,7 +81,7 @@ def process_entity(batch, model, device):
|
|
| 81 |
#pivot_embeddings = embeddings[:, :pivot_token_len, :]
|
| 82 |
|
| 83 |
#return pivot_embeddings.cpu().numpy(), input_ids.cpu().numpy()
|
| 84 |
-
return embedding
|
| 85 |
|
| 86 |
all_embeddings = []
|
| 87 |
for i, batch in enumerate(data_loader):
|
|
@@ -112,6 +112,12 @@ def get_bert_embedding(review_text):
|
|
| 112 |
|
| 113 |
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
st.title("SpaGAN Demo")
|
| 116 |
st.write("Enter a text, and the system will highlight the geo-entities within it.")
|
| 117 |
|
|
@@ -153,9 +159,11 @@ if st.button("Highlight Geo-Entities"):
|
|
| 153 |
# Debug: Print the embeddings themselves (optional)
|
| 154 |
st.write("Embeddings:", bert_embedding)
|
| 155 |
|
|
|
|
| 156 |
combined_embedding = torch.cat((bert_embedding,all_embeddings[0]),dim=-1)
|
| 157 |
st.write("Concatenated Embedding Shape:", concatenated_embedding.shape)
|
| 158 |
st.write("Concatenated Embedding:", concatenated_embedding)
|
|
|
|
| 159 |
# Process the text using spaCy
|
| 160 |
doc = nlp(selected_review)
|
| 161 |
|
|
|
|
| 40 |
#Load data using SpatialDataset
|
| 41 |
spatialDataset = PbfMapDataset(data_file_path = data_file_path,
|
| 42 |
tokenizer = bert_tokenizer,
|
| 43 |
+
max_token_len = 256, #Originally 300
|
| 44 |
#max_token_len = max_seq_length, #Originally 300
|
| 45 |
distance_norm_factor = 0.0001,
|
| 46 |
spatial_dist_fill = 20,
|
| 47 |
with_type = False,
|
| 48 |
sep_between_neighbors = True,
|
| 49 |
label_encoder = None,
|
| 50 |
+
mode = None) #If set to None it will use the full dataset for mlm
|
| 51 |
|
| 52 |
data_loader = DataLoader(spatialDataset, batch_size=1, num_workers=0, shuffle=False, pin_memory=False, drop_last=False) #issue needs to be fixed with num_workers not stopping after finished
|
| 53 |
|
|
|
|
| 81 |
#pivot_embeddings = embeddings[:, :pivot_token_len, :]
|
| 82 |
|
| 83 |
#return pivot_embeddings.cpu().numpy(), input_ids.cpu().numpy()
|
| 84 |
+
return embedding, input_ids
|
| 85 |
|
| 86 |
all_embeddings = []
|
| 87 |
for i, batch in enumerate(data_loader):
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
st.title("SpaGAN Demo")
|
| 122 |
st.write("Enter a text, and the system will highlight the geo-entities within it.")
|
| 123 |
|
|
|
|
| 159 |
# Debug: Print the embeddings themselves (optional)
|
| 160 |
st.write("Embeddings:", bert_embedding)
|
| 161 |
|
| 162 |
+
#combine the embeddings (NOTE: come back and update after testing)
|
| 163 |
combined_embedding = torch.cat((bert_embedding,all_embeddings[0]),dim=-1)
|
| 164 |
st.write("Concatenated Embedding Shape:", concatenated_embedding.shape)
|
| 165 |
st.write("Concatenated Embedding:", concatenated_embedding)
|
| 166 |
+
|
| 167 |
# Process the text using spaCy
|
| 168 |
doc = nlp(selected_review)
|
| 169 |
|