SpaGAN / models /spabert /utils /baseline_utils.py
JasonTPhillipsJr's picture
Upload 76 files
46e0dd0 verified
from transformers import BertModel, BertTokenizer
from transformers import RobertaModel, RobertaTokenizer
from transformers import AutoModel, AutoTokenizer
from transformers import LukeTokenizer, LukeModel
def get_baseline_model(model_name):
if model_name == 'bert-base':
name_str = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(name_str)
model = BertModel.from_pretrained(name_str)
elif model_name == 'bert-large':
name_str = 'bert-large-uncased'
tokenizer = BertTokenizer.from_pretrained(name_str)
model = BertModel.from_pretrained(name_str)
elif model_name == 'roberta-base':
name_str = 'roberta-base'
tokenizer = RobertaTokenizer.from_pretrained(name_str)
model = RobertaModel.from_pretrained(name_str)
elif model_name == 'roberta-large':
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
model = RobertaModel.from_pretrained('roberta-large')
elif model_name == 'spanbert-base':
tokenizer = AutoTokenizer.from_pretrained('SpanBERT/spanbert-base-cased')
model = AutoModel.from_pretrained('SpanBERT/spanbert-base-cased')
elif model_name == 'spanbert-large':
tokenizer = AutoTokenizer.from_pretrained('SpanBERT/spanbert-large-cased')
model = AutoModel.from_pretrained('SpanBERT/spanbert-large-cased')
elif model_name == 'luke-base':
tokenizer = LukeTokenizer.from_pretrained('studio-ousia/luke-base')
model = LukeModel.from_pretrained('studio-ousia/luke-base')
elif model_name == 'luke-large':
tokenizer = LukeTokenizer.from_pretrained('studio-ousia/luke-large')
model = LukeModel.from_pretrained('studio-ousia/luke-large')
elif model_name == 'simcse-bert-base':
name_str = 'princeton-nlp/unsup-simcse-bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(name_str)
model = AutoModel.from_pretrained(name_str)
elif model_name == 'simcse-bert-large':
name_str = 'princeton-nlp/unsup-simcse-bert-large-uncased'
tokenizer = AutoTokenizer.from_pretrained(name_str)
model = AutoModel.from_pretrained(name_str)
elif model_name == 'simcse-roberta-base':
name_str = 'princeton-nlp/unsup-simcse-roberta-base'
tokenizer = AutoTokenizer.from_pretrained(name_str)
model = AutoModel.from_pretrained(name_str)
elif model_name == 'simcse-roberta-large':
name_str = 'princeton-nlp/unsup-simcse-roberta-large'
tokenizer = AutoTokenizer.from_pretrained(name_str)
model = AutoModel.from_pretrained(name_str)
else:
raise NotImplementedError
return model, tokenizer